
Integrated Localization and Control for Accurate
Multi-Agent Formation

Yang Cai and Yuan Shen

Tsinghua National Laboratory for Information Science and Technology
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Email: caiyang15@mails.tsinghua.edu.cn, shenyuan ee@tsinghua.edu.cn

Abstract—High-accuracy formation is of great significance for
multi-agent systems to perform complex tasks, and the accuracy
of the formation is determined jointly by the network localization
and formation control procedures. Existing studies commonly
treat the two procedures separately and do not exploit an
integrated design, leading to suboptimal formation performance.
This paper establishes a general framework for high-accuracy
multi-agent formation by integrated localization and control.
In particular, we first propose a new metric called formation
error to characterize the minimum squared distance between a
real formation and a target one over arbitrary translation and
rotation. Then we develop an integrated localization and control
scheme to minimize the formation error. In the case study, we
design the minimum mean formation error control algorithm
along with a specific link selection strategy. Numerical results
validate the performance gain of the integrated scheme over
existing methods, and demonstrate effects of system parameters,
which can serve as a guideline for practical system design.

I. INTRODUCTION

Multi-agent systems can accomplish numerous complicated
missions, such as target tracking, cooperative combat and
stereo reconstruction, of which a single agent is hardly capable
[1], [2]. Specially, there is a growing tendency of using swarms
of unmanned aerial vehicles (UAV) to perform confidential
or dangerous tasks in predefined formations, which raised
an urgent demand for approaches of high-accuracy multi-
agent formation. The realization of the goal relies crucially
on the position information, which can be acquired with the
aid of localization techniques. The global positioning system
(GPS), however, only provides location estimation of limited
precision, and does not operate well in harsh environments
with high interference or obstacle shadowing. Cooperative
localization among agents addresses the drawbacks, and thus
can aid the application of multi-agent formation [3].

The fundamental questions related to the multi-agent for-
mation are 1) how to perform network localization to provide
information that meets the requirement of formation control,
and 2) how to determine the formation control that exploits the
estimated positions of agents to adjust the network geometry.
The performance of the multi-agent formation is determined
interactively by both procedures, and thus can benefit from
integrated design of the strategies, which can lead to more
rational localization executions and control algorithms.

There are some studies on each individual topic. On the
one hand, most existing methods of formation control mainly
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Fig. 1. A squad of three UAVs with the target formation an equilateral
triangle. The multi-agent system moves along a planned trajectory δ(t) at
each time slot, and manages to maintain the geometry by two steps: 1) agents
update their position estimations by ranging measurements, and 2) each agent
adjusts its position locally based on estimations of the entire formation.

focus on the stability, rather than the accuracy of the network
formation [4], [5]. The performance of a control algorithm
is either evaluated by the rate of convergence to the target
formation, or the deviation of the true trajectory from the
planned one. However, these metrics do not directly reflect
how close the real formation is to the target formation. On
the other hand, current studies usually design link selection
strategies to enhance the absolute network localization under
limited spectrum resource [6], [7], while the performance of
network formation is determined by relative positions. It also
differs from the relative positioning error [8], [9], since we
make the evaluation on the real network, which is affected by
not only network localization, but also formation control. To
sum up, a new metric is needed to characterize the accuracy of
multi-agent formation, and we should consider the integration
of localization and control in the design of strategies.

In this paper, we investigate high-accuracy multi-agent
formation under limited spectrum resource. The main contri-
butions are summarized as follows:

• We propose a metric called formation error to character-
ize the minimum squared error between a real formation
and a target one over arbitrary translation and rotation.

• We establish a general framework for the multi-agent



formation, and develop an integrated localization and
control scheme to enhance the performance.

• We design the minimum mean formation error (MMFE)
control algorithm along with a specific link selection
strategy in the case study.

Notations: The n-dimensional real number space is denoted
by R

n. Vector (matrix) is denoted by bold lowercase (capital)
letter x (A). Specially, IN is the identity matrix of order
N , and 1N is the N × 1 vector with all elements being 1.
[·]T, [·]−1 and tr{·} denote the transpose, inverse and trace
of its argument, respectively. N (μ,Σ) denotes the normal
distribution with mean value μ and covariance matrix Σ.

II. SYSTEM MODEL

Consider a network with N agents on the two dimensional
plane for T time slots. Denote the position of the ith agent at
time slot t by x

(t)
i ∈ R

2, and its estimation by x̂
(t)
i . Define

the formation of the network as a column vector x(t) ∈ R
2N

including the positions of all agents in it, namely

x(t) =
[
x
(t) T
1 x

(t) T
2 · · · x

(t) T
N

]T
. (1)

There may also exist some anchors with known positions,
which can aid the agents in localization.

The objective of the multi-agent formation is to conform
the real network with the target geometry. A target formation
ξ ∈ R

2N is defined by including the target positions of all
agents {ξi ∈ R

2} in the column vector,1 and it is assumed to
be constant during the observed period.

A. Physical Control Model
The movement of each agent can be divided into two parts.

First, the entire formation moves along a planned trajectory
δ(t) at time slot t, which is a global displacement and known
to all agents, to accomplish certain tasks. Second, each agent
performs a local control c(t)i on its own position to conform
the real network with the target formation.2 Thus the location
of agent i at time slot t is given by

x
(t)
i = x

(t−1)
i +

[
δ(t) + c

(t)
i +w

(t)
i

]
(2)

where w
(t)
i ∼ N (0, σ2

c I2) is independently and identically
distributed (i.i.d.) for each agent. We further define that

c(t) =
[
c
(t) T
1 c

(t) T
2 · · · c

(t) T
N

]T (3)

w
(t) =

[
w

(t) T
1 w

(t) T
2 · · · w

(t) T
N

]T
. (4)

B. State Inference Model
For location inference, the agents perform distance measure-

ments with neighboring nodes by technologies such as round-
trip time (RTT). The distance measurement between agent i
and j at time slot t is modeled as

d
(t)
ij =

∥∥x(t)i − x
(t)
j

∥∥+ v
(t)
ij (5)

1The target formation is not unique because of translation and rotation, and
thus it is a set rather than a single vector (see Section III). Such expression
just denotes a realization of the target formation.

2In practical systems, control on the acceleration can be derived by
designing the corresponding double integrator controller [10].

where v
(t)
ij ∼ N (0, σ2

r ) denotes the ranging noise, assumed
to be i.i.d. for different ranging links. Suppose that each time
slot can be divided into L resource units (RU), and only one
ranging link is set up in the entire network for each RU.

The agents can update the position estimations based on
the state evolution model (2) and distance measurements (5)
by various approaches. Particularly, this paper employs the
method of particle filter [11]. The number of particles used to
describe the position distribution is proportional to |Σ̂(t)

i |1/2,
where Σ̂(t)

i is the estimated covariance matrix of x̂(t)i .

III. FRAMEWORK FOR MULTI-AGENT FORMATION

In this section, we propose a new metric called formation
error to characterize the difference between a real formation
and a target one over arbitrary translation and rotation, and
establish a general framework for the multi-agent formation.

A. Performance Metric
In the problem of the multi-agent formation, we adjust the

real network towards the target geometry, as is presented in
the target formation ξ. The goal is realized as long as the
formation after control can be achieved by applying certain
translation and rotation operators to the target formation ξ.
Thus the objective of the multi-agent formation is actually a
set, rather than a vector, which is different from many other
problems of parameter estimation where the squared error is
usually employed as the performance metric.
Definition 1: The set including all target formations, which

can be achieved by applying translation and rotation to ξ, is
called the feasible set and is denoted by S = S(ξ).

According to Definition 1, each element in the feasible set
can be realized as follows: 1) set the initial formation as the
target formation ξ, 2) rotate the entire formation by some angle
ϑ ∈ [0, 2π), and 3) translate each agent by some vector t ∈ R

2.
Thus the feasible set can be presented as

S(ξ) = {
[IN ⊗R(ϑ)]ξ + 1N ⊗ t

}
(6)

where R(ϑ) denotes the Givens matrix with angle ϑ

R (ϑ) =

[
cosϑ − sinϑ
sinϑ cosϑ

]
(7)

and ⊗ is the Kronecker product. Note that the feasible set
generated from any target formation is the same, and thus
without loss of generality, we can assume that the target
formation is centered at the origin, namely

∑N
i=1 ξi = 0.

Definition 2: The formation error between formations x

and ξ is defined as the squared distance between vector x

and the feasible set S = S(ξ), which is

F(x, ξ) = min
s∈S

‖x− s‖2. (8)

Formation error is in fact the least squared error between
the real formation and all target formations. Define the cost
of control as the sum of squared distances that each agent
moves during the procedure of formation control, then the
formation error indicates the least cost of control that is needed
to conform the real formation with a target one for the entire



system. For a more intuitive understanding of the formation
error, the root averaged formation error can be defined as

RAFE(x, ξ) =
√
F(x, ξ)/N (9)

which roughly describes the least averaged distance each agent
needs to move to conform with the target formation.
Proposition 1: The formation error between formations x

and ξ is given by

F(x, ξ) = ‖Dx‖2 + ‖ξ‖2 − 2 ‖ξ‖ [xT(DPD)x
]1/2 (10)

where

D = I2N − 1

N
(1N1

T
N )⊗ I2 (11)

and the projection matrix

P =
1

‖ξ‖2 (ξξ
T + ηηT) (12)

with another target formation η = [IN ⊗R (π/2)]ξ.
Proof: Since the feasible set can be expressed as (6), the

formation error follows that

F(x, ξ) = min
t,ϑ

{ N∑
i=1

‖xi −R(ϑ)ξi − t‖2
}
. (13)

Set both derivatives with respect to t and ϑ as zero, and the
optimal translation and rotation are given by

{t�, ϑ�} =
{ 1

N

N∑
i=1

xi, arctan
[ηT(x− t�)

ξT(x− t�)

]}
. (14)

Then the formation error (10) can be derived by substituting
(14) into (13), using R(ϑ) = I cosϑ+R(π/2) sinϑ.

Matrix D denotes the operation that translates the entire
formation until its mass center is located at the origin, which
can eliminate the influence of translation. For the convenience
of notation, we define y = Dx in the rest of this paper.

B. Geometrical Interpretation
Note that formation η can be achieved by rotating the

formation ξ for ϑ = π/2, which implies ξTη = 0. Matrix P

denotes the operation that projects a formation onto the two-
dimensional subspace P = span{ξ,η}, where vectors {ξ,η}
can be regarded as a set of orthogonal basis for P .
Proposition 2: The subset of S(ξ), which includes all target

formations with mass centers at the origin, is a circle of radius
‖ξ‖ centered at the origin in the hyperplane P .

Proof: Since the mass center is constrained at the origin,
such a target formation ζ can be expressed as

ζ = [IN ⊗R(ϑ)]ξ =
[
ξ η

] [
cosϑ sinϑ

]T
. (15)

Thus ζ ∈ P and ‖ζ‖ = ‖ξ‖. Vice versa.
An equivalent form for formation error (10) is given in the

following proposition, which is derived from the perspective
of subspaces and induces a geometric interpretation.
Proposition 3: The formation error can be decomposed as

F(x, ξ) = ‖y⊥‖2 +
(‖y//‖ − ‖ξ‖)2 (16)

Target formation

P = span{ξ,η}

‖ξ‖
O

‖y//‖

‖y//‖ − ‖ξ‖

‖y⊥‖

Real formation y

Formation error

Fig. 2. The decomposition of formation error. The parallel error is the squared
distance between the projection of y on P and the circle of target formations;
the vertical error is the squared distance from y to P .

where y// = Py and y⊥ = (I − P )y are respectively the
components of formation y in subspace P and its orthogonal
complementary P⊥.

Proof: By the orthogonal projection theorem, formation
y can be decomposed as y// within the range and y⊥ within
the kernel of projection P . It then follows that

‖y‖2 = ‖y//‖2 + ‖y⊥‖2 (17)

and since P is both symmetric and idempotent,

yTPy = [Py]T[Py] = ‖y//‖2. (18)

Substituting the above terms into (10) leads to (16).
As Fig. 2 shows, the formation error (16) can be decom-

posed into two parts, each of which is separately determined
by the components of the formation y in the corresponding
subspaces, namely y⊥ and y//, and we call them the vertical
error and the parallel error, respectively. Specially, the parallel
error is the squared distance from y// to the circle of target
formations, and is free of the direction of y//. Thus the effect
of rotation is eliminated in the metric of formation error.

C. General Framework
As a typical application of cyber-physical systems (CPS),

multi-agent formation can generally be realized by three steps
– environment sensing, state estimation and formation control,
and strategies A , E and C are respectively applied in each
step. Specially, the network state x(t) refers to the positions
of all agents in the multi-agent system.

First, for better estimation of the current network state,
the resource, such as power or spectrum, is allocated based
on the target formation and previous estimation x̂

(t−1) by
strategy A , and the measurements m

(t) are obtained. Next,
information fusion of the state evolution and observations is
realized by method E to update the estimated network state.
Finally, control vector c(t) is generated from policy C based
on the estimation and the target formation so that the real
formation of the multi-agent system is rationally adjusted.



Input Input

Input Output
Sensing Estimation Controlm x̂

c

Target Formation ξ

Network State x

z−1

z−1

Fig. 3. The general framework for high-accuracy multi-agent formation,
where z

−1 denotes the unit of time delay. The existence of the target
formation affect both the sensing phase and the control phase.

Due to uncertainty of measurements and control, the output
formation is a random vector. The sequence of real formations
{x(t)} is a stochastic process, and the state evolutes by

x
(t) = x

(t−1) + c
(t)
(
x̂
(t)(

m
(t)
))

+w
(t). (19)

To evaluate the average performance of the network formation
under certain combination of strategies {A ,E ,C }, the mean
formation error (MFE) is then defined as

F (t)({A ,E ,C }) = E{F(x(t), ξ)} (20)

for time slot t, and the time-averaged MFE follows that

F ({A ,E ,C }) = 1

T

T∑
t=1

F (t)({A ,E ,C }) (21)

which can characterize the stability of multi-agent formation
as the length of observed period T → ∞.

IV. INTEGRATED LOCALIZATION AND CONTROL

In order to improve the accuracy of multi-agent formation,
we advocate joint optimization over the separate procedures
presented in Fig. 3, and an integrated localization and control
scheme is proposed as follows.

A. Motivation for Integration
The performance of the multi-agent formation can benefit

from integrated design of localization and control. We can ma-
nipulate the execution of network localization by designing the
strategy of link selection. The optimal integrated localization
and control approach refers to

{A ,C }� = argmin
A ,C

F ({A ,E0,C }) (22)

where E0 is a given estimation method. Benefits of integrated
strategy design are twofold. First, to design the control policy,
we can refine assumptions on the inputs (estimated network
state) by analyzing the link selection strategy. Second, in the
design of link selection, we can consider the integration of its
outputs (set of selected links) with the control policy.

B. Integrated Strategy Design
We then follow the principle of the proposed integrated

scheme to design an execution of network localization (link
selection), in order to aid a specific control policy.
1) Control Policy: We first design the minimum MFE

control when the real formation x is given. The goal is to
achieve least MFE in the presence of control error, and we
aim for lowest cost of control once the goal is attained. With
control vector c and error w, the MFE can be derived as3

F = E{F(x+ c+w, ξ)}
= ‖y⊥ + c⊥‖2 + h(‖y//+ c//‖2) + (2N − 2)σ2

c
(23)

where c⊥ and c// are the components of the control vector in
subspaces P⊥ and P , and we define that for ν ≥ 0,

h(ν) = ν −
√
2πσc‖ξ‖L1/2

(
− ν

2σ2
c

)
+ ‖ξ‖2 (24)

with L1/2(·) denoting the 1/2 order Laguerre polynomial.
Note that h(ν) attains its minimum at ν = ρ2 where

ρ =
[
max

{
− 2σ2

c g
(
− 2σc√

2π‖ξ‖
)
, 0

}]1/2
(25)

with g(·) the inverse function of first derivative of L1/2(·).
Since c⊥ and c// are not interacted in (23), we can design

them separately in order to minimize the MFE. On the one
hand, the MFE is affected by component c⊥ via ‖y⊥+c⊥‖2,
which directly leads to c⊥ = −y⊥. On the other hand, the
component c// is optimal for reducing the MFE as long as
‖y// + c//‖ = ρ. To sum up, the optimal control set whose
element can achieve the least MFE is given by

C =
{ ρ

‖ξ‖ (ξ cosα+ η sinα)− y
∣∣∣α ∈ [0, 2π)

}
. (26)

Among the control vectors in (26), the minimum cost of
control is achieved when α� = arctan(ηTy///ξ

Ty//). Hence,
given the real formation x, the MMFE control is

C�(x) = ρ
PDx

‖PDx‖ −Dx (27)

which utilizes x̂ instead of x in practical implements.
2) Sensing Strategy: We then develop a specific strategy

of link selection to aid the performance of MMFE control,
when the real formation is unknown and we need to estimate
the agents’ positions. This strategy is designed for scenarios
where 1) control uncertainty σc 
 ‖ξ‖, and 2) the estimated
formation x̂ is of high accuracy. The MFE can be derived as

F = E{F(x+ C�(x̂) +w, ξ)}
= E{‖y − ŷ‖2}+ (ρ− ‖ξ‖)2 + (2N − 2)σ2

c + F̃
(28)

where
F̃ =− 2‖ξ‖E{‖y//+ ρ ŷ///‖ŷ//‖ − ŷ//+Dw//‖}

+ 2‖ξ‖ ρ+ 2ρE{(y//− ŷ//)
T
ŷ///‖ŷ//‖}.

(29)

3Note that the error resulted from control uncertainty is reduced by 2σ
2
c ,

since in MFE we apply the operation D to eliminate the effect of translation,
which is described by two dimensions for a plane formation.



Under the assumptions above, the arguments of the expectation
operator in the first and last terms of (29) can be approximated
by the second-order Taylor polynomials of the corresponding
functions at ŷ// = y//, which leads to an approximated form of
the MFE defined in (28) as follows

FA = E{(y − ŷ)TB(y − ŷ)}+ Fc. (30)

The term Fc denotes the part of error resulted from control
uncertainty, which is defined as

Fc = (ρ− ‖ξ‖)2 +
(
2N − 2− ‖ξ‖

ρ

)
σ2

c . (31)

The weight matrix in the first term of (30) is given by

B = I2N −
[‖ξ‖

ρ
− 2(‖ξ‖ − ρ)

‖y//‖
] yτy

T
τ

‖yτ‖2 (32)

where yτ = [(ξηT −ηξT)/‖ξ‖2]y lies in the subspace P and
is perpendicular to y//, and denotes the dimension of rotation
operator, which is free of concern in multi-agent formation.
Proposition 4: In the presence of ranging and control un-

certainty, the approximated MFE is lower bounded by

FA ≥ tr{BDJ−1(x)}+ Fc (33)

where J(x) denotes the Fisher information matrix (FIM) for
formation x based on the state evolution and observations.

Proof: According to the information inequality, the mean
squared positioning error (SPE) is lower bounded by [12]

E{(x− x̂)(x− x̂)T} � J−1(x). (34)

Transformation of parameters leads to (33).
We develop the link selection strategy in order to minimize

the theoretical bound. Denote the FIM at the beginning of the
RU by J0(x), and the FIM when the ranging link (i, j) is
set up by Ji,j(x). The weight of link (i, j) is defined as the
reduction of (33) due to its existence, namely

vi,j = tr{BD[J−1
0 (x)− J−1

i,j (x)]}. (35)

The link with largest weight is optimal in resource utility for
error reduction, and will be set up for the RU.4
Remark 1: The lower bound (33) contains two parts. The

first part exhibits the effect of positioning uncertainty, where
the SPEs of the agents are weighted by BD. The second
part (31) indicates the effect of control uncertainty, which can
be interpreted as the bias and variance decomposition, where
variance on all directions is concerned except those implying
translation and rotation (totally three dimensions).
Remark 2: The lower bound (33) is affected by uncertain-

ties of control σ2
c and ranging σ2

r in an intricate way, since
the positioning error is jointly determined by the uncertainty
of state evolution and observation. In a special case where
σc � σr, the observations can provide more accurate infor-
mation than the state evolution, and the SPE will be almost
proportional to σ2

r and free of σ2
c , leading to MFE exhibiting

a linear growth with both parameters.

4In practice, approximated FIM and weight matrix B calculated from the
estimated formation are used in (35) for the implement of this procedure.
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Fig. 4. Compared with the potential decent control, MMFE control attains
lower MFE, and the gap grows with the number of UAVs.

V. NUMERICAL RESULTS

Consider a squad of N UAVs on a plane for T = 103 time
slots. The planned trajectory is set as δ(t) = [0 5]T m for
all time slots. The set of anchors’ positions is a homogeneous
Poisson point process (PPP) with λ = 5 × 10−5 m−2. The
target formation is a uniform line with the distance between
adjacent agents being 20 m. The communication range is R =
100 m, and the number of RUs is set as L = N .

A. Control Policy
We compare the MMFE control with the potential decent

control, where the target position of agent i is given by [5]

x�
i = argmin

x

∑
j �=i

(‖x− xj‖2 − ‖ξi − ξj‖2)2. (36)

The real formation x ∼ N ((R(β) ⊗ IN )ξ, I2N ) m is known,
where β ∼ U [0, 2π) is a random orientation. We consider two
scenarios, where the numbers of UAVs are N = 4 and N = 6,
and the control uncertainty is σ2

c = 1 m2 for both cases.
First, we compare the time-averaged MFE of both methods

in Fig. 4. The MMFE control achieves lower MFE than the
potential decent control, and the performance gap increases as
the size of formation grows. Second, we compare the mean
cost of control, namely E{‖c‖2}, of the methods. The MMFE
control requires lower cost, namely 21 m2 and 29 m2, than
the potential decent control (100 m2 and 124 m2). Finally, the
time complexity of MMFE control is two orders of magnitude
lower than the potential decent control for both scenarios,
since the MMFE control has a closed-form expression that
can be implemented without iterations, and thus it exhibits
higher capability in real-time tasks.

B. Link Selection
We then compare the performance of the proposed link

selection strategy and random selection, in scenarios where the
number of UAVs ranges from 4 to 20, and σ2

c = σ2
r = 1 m2.

The MMFE control is adopted for all cases.
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Fig. 5. The time-averaged MFE under the proposed strategy increases linearly
with the size of formation, and outperforms that of random selection, which
results in an increasing averaged MFE per agent as agent number grows.

As shown in Fig. 5, under the proposed strategy, the time-
averaged MFE is proportional to the number of agents. How-
ever, under random selection, the share of the time-averaged
MFE in each agent increases with the size of formation, from
which it is reasonable to infer that random selection is not
capable of maintaining the geometry in applications requiring
large multi-agent systems. We also present the performance
curve when the precise formation is provided, which serves as
the baseline for all link selection strategies.

C. System Parameters
We finally investigate the effects of system parameters on

the time-averaged MFE in a formation of N = 4 UAVs,
with various control uncertainty σ2

c and ranging uncertainty
σ2

r in different scenarios. The MMFE control policy and the
proposed link selection strategy are employed.

The results are shown in Fig. 6. First, the MFE increases
sub-linearly with the ranging uncertainty σ2

r due to the state
evolution model, which constrains the growth of the SPE
with σ2

r , especially under precise control. Second, the MFE
increases almost linearly with the control uncertainty σ2

c ,
which includes the growth of the error resulted from control
uncertainty and the increment of the positioning error. The
results provide us some intuitive understanding about the
effects of the system parameters, and can serve as a guideline
for practical system design.

VI. CONCLUSION

In this paper, we established a general framework for high-
accuracy multi-agent formation. We first proposed a new
metric called formation error to characterize the minimum
squared distance between a real formations and a target one
over arbitrary translation and rotation. Then we developed an
integrated localization and control scheme to minimize the
formation error, and designed the MMFE control algorithm
along with a specific link selection strategy in the case study.
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Fig. 6. The time-averaged MFE increases sub-linearly with the ranging
uncertainty σ

2
r , and almost linearly with the control uncertainty σ

2
c . When

σ
2
c � σ

2
r , it grows almost linearly with both parameters.

Numerical results were presented to validate the performance
gain of the proposed methods, and demonstrated the effects of
the control and the measurement uncertainty, which can serve
as a guideline for the design of practical systems.
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