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An Integrated Localization and Control Framework
for Multi-Agent Formation
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Abstract—High-accuracy formation is essential for multi-agent
systems to accomplish certain tasks, and the accuracy of the
formation is determined jointly by the network localization and
formation control procedures. Existing studies commonly treat
the two procedures separately in the system design, leading
to suboptimal formation performance. This paper establishes a
general framework for high-accuracy multi-agent formation via
integrated localization and control. In particular, we propose
a new metric called the formation error to characterize the
minimum squared distance between two formations for arbitrary
translation and rotation, and develop an integrated localization
and control scheme to minimize the mean formation error (MFE).
Theoretical bounds for the MFE are derived in a closed form,
which guides the integrated design of the sensing strategy and
control policy. In the case study, we develop efficient integrated
algorithms for multi-agent formation under spectrum resource
constraints. Numerical results validate the performance gain of
the proposed algorithms over existing ones as well as demonstrate
the effects of the network parameters on formation performance.

Index Terms—Formation control, formation error, integrated
localization and control, resource allocation.

I. INTRODUCTION

Multi-agent systems can leverage the cooperation among
agents to accomplish complicated missions that one single
agent is hardly capable of, in both military and civil sectors.
For example, with the development of unmanned autonomous
vehicle (UAV) techniques, multiple or even swarms of UAVs
can be coordinated to perform dangerous or confidential tasks.
The potential applications include target detection and tracking
[1], surveillance and reconnaissance [2], stereo reconstruction
and mapping [3], Internet of vehicles [4], communication
relaying [5], and precision agriculture [6]. In many of these
emerging applications, the system performance highly depends
on the accuracy of the formation, calling for the advancement
of multi-agent formation (MAF) techniques with high accu-
racy and efficiency [7].

Existing schemes for MAF usually decompose the task into
two procedures, namely network localization and formation
control [8]. Specifically, the agents first estimate their positions
by position-related measurements in network localization; and
then based on the position estimates, the agents collaboratively

Y. Cai was with the Department of Electronic Engineering, Tsinghua
University, Beijing 100084, China. He is now with the Department of
Electrical Engineering, University of Southern California, Los Angeles, CA
90089-2565 USA (e-mail: yangcai@usc.edu).

Y. Shen is with the Department of Electronic Engineering, Tsinghua
University, Beijing 100084, China, and Beijing National Research Center
for Information Science and Technology, Beijing 100084, China (e-mail:
shenyuan ee@tsinghua.edu.cn).

1 2

3

4

1⋆ 2⋆

3⋆ 4⋆

w12

w13

w24

w34

Agent (before control) Agent (after control)

Target formation

Fig. 1. MAF example: A network of four agents aims to form a target forma-
tion (a square). The agents (blue nodes) with position uncertainty (orange area)
first make inter-node measurements (green lines) with spectrum resource wij

for link (i, j); and then estimate their formation and collaboratively control
their movements to adjust the actual formation to the target formation.

control their movements to adjust the actual formation to the
target formation in formation control. In the two-procedure
task, the accuracy of the position estimates from network
localization is critical to the performance of the formation
control. A common approach for network localization uses
the global positioning system (GPS), where the agent positions
are estimated by the pseudo-range measurements between the
agents and the satellites. However, GPS may not be able to
provide sufficient localization accuracy for MAF applications,
or even fails in the presence of interference or obstacle
shadowing [9]. To this end, inter-node measurements such
as the round-trip time (RTT) and the angle of arrival (AoA)
can be employed to further improve the localization accuracy
by cooperative techniques [10]–[12]. Indeed, the inter-node
measurements are particularly helpful for MAF since the
relative position information provided by these measurements
is directly related to the geometry of the network.

In the field of network localization, theoretical frameworks
for cooperative localization based on wideband transmission
are established, and the fundamental limits of the localization
accuracy are derived under various network settings [13]–[15].
Several localization algorithms, such as the multidimensional
scaling (MDS) [16] and the semidefinite programming (SDP)
[17], are proposed for practical cooperative localization net-
works. Specially, localization based on relative measurements
between the agents fits within the scope of the MAF. Questions
related to self-localizability are studied, and several graph-
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theory based algorithms are developed [18]–[20]. To enhance
the localization accuracy under resource constraints such as
power and spectrum, recent studies were devoted to designing
the sensing strategy with resource allocation [21]–[23]. In
the context of MAF, it is also desirable to use the resource
efficiently in improving the formation performance. However,
the sensing strategy designed for network localization is not
necessarily suitable for MAF due to two main differences
between MAF and network localization, especially relative
localization [24]–[26]. First, the given target formation is
the basis for evaluating the MAF performance, whereas only
the position estimation errors are of concern in network
localization. Second, MAF includes a successive procedure of
formation control, in addition to network localization. Thus,
we need to define a new performance metric for MAF and to
design the sensing strategies under a given control policy.

In the robotic community, existing studies on formation
control can be divided into graph-based and velocity-based
methods [27]–[29], or their combination termed as “flocking
with shape control” [30]. Specially, the graph-based methods
operate on the geometry of the current network, and the
agent positions are adjusted to form the actual formation as
the target formation [31]–[33]. The objective of a control
policy is mainly towards the stability [34], and the evaluation
usually depends on the probability of convergence to the
target formation in static networks [35], or the deviation
of the agents’ actual trajectories from the planned ones in
dynamic networks [36]. There are two challenges to apply
existing methods to high-accuracy MAF: the existing criteria
do not sufficiently characterize the accuracy of MAF, and most
existing methods only employ the position estimates, but not
fully exploit the statistical information of the measurements.
These again require a new performance metric for MAF and
motivate us to incorporate the statistical information when
designing the control policy.

Recently, much research interest is motivated to design
localization and control procedures in an integrated way for
MAF. Several algorithms aiming for simultaneous localiza-
tion and formation control are developed [37]–[39]. In [37],
orientation alignment of the agents is tackled in addition to
position estimation as well as formation control; in [38], a
novel distributed relative localization algorithm is combined
with the complex Laplacian based formation control. In this
work, we focus on exploiting the advantages of integrating
the two procedures from the perspective of information. Some
preliminary results validate that adjusting localization strategy
according to the control policy can effectively leverage the
MAF performance [40]. To realize this goal, the two key
questions need to be addressed:

• how to perform network localization that provides the
most useful information for MAF;

• how to design formation control that fully exploits the
statistical information in the measurements.

In this paper, we investigate the high-accuracy MAF prob-
lem in mobile wireless networks, and propose an integrated
localization and control (ILC) framework. As a case study,
we propose a joint design of sensing strategies and control

TABLE I
COMMONLY USED SYMBOLS

Symbol Description
x Actual formation (collecting the positions of all nodes).
ξ (A realization of) target formation (collecting the posi-

tions of all nodes in a network of target geometry).
r The collection of all measurements.
c Aggregated control vector for the entire formation.
F(q) Equivalent formation set of formation q.
`(x, ξ) Formation error between two formations x and ξ.
¯̀, ¯̀⊥, ¯̀// Mean formation error, and its orthogonal and parallel

components.
w Resource allocation vector.

policies for MAF under spectrum resource constraints. The
main contributions of this work are summarized as follows:
• We establish an analytical framework for MAF in the

presence of measurement noises and control errors, and
propose an ILC scheme for MAF;

• We propose a new metric called the formation error,
which characterizes the minimum squared distance be-
tween the actual formation and the target formation for
arbitrary translation and rotation, and derive the theoret-
ical bounds for the mean formation error (MFE); and

• We formulate an optimization problem to minimize the
MFE under resource constraints via joint design of the
sensing strategy and the control policy, and develop an
efficient algorithm for practical systems.

The rest of this paper is organized as follows. Section
II describes the system model, and Section III defines the
formation error and reveals some of its properties. Section
IV derives the theoretical bounds for the MFE, followed by
the optimization formulation for ILC in Section V. Section VI
presents several numerical results, and conclusions are drawn
in last section.

Notations: The n-dimensional real number space is denoted
by Rn, and vectors are written as bold letters x and matrices
as bold capital letters X . The random variables and random
vectors are written as x and bold letters x, respectively. [·]T,
[·]−1 and tr {·} denote the transpose, inverse and trace of its
argument, respectively. Column vectors of size m with all 0’s
and 1’s are respectively denoted as 0m and 1m, and Im and
Om represent the m × m identity and zero matrices. The
directional vector is defined as u(θ) = [cos θ sin θ]T. For
two symmetric matrices X and Y , X � Y means X −Y is
a positive semi-definite matrix. E{·} denotes the expectation
operator with respect to (w.r.t.) random variable or vector.

II. SYSTEM MODEL

Consider a wireless network with N mobile agents in the
two-dimensional plane.1 At a given time slot, we model the
position of agent i as an unknown deterministic vector xi ∈
R2 for i = 1, 2, . . . , N , and the actual formation x of the
agents is the vector containing all agent positions, given by

x = [xT
1 xT

2 · · · xT
N ]T. (1)

1The analysis can be extended to the three-dimensional case, and the main
results hold with minor modifications, as shown in Section III-C.
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In this paper, we focus on the analysis for a single time slot,
which is divided into the localization phase and the control
phase. In the localization phase, the agents make inter-node
measurements with each other, and then derive the formation
estimate x̂ from all the measurements up to the current time
slot.2 In the control phase, the agents depend on the estimated
formation x̂ to control their movements collaboratively, in
order to form the actual formation as close to the target
formation as possible, regardless of the formation center and
orientation. The target formation ξ is defined as

ξ = [ξT1 ξT2 · · · ξTN ]T (2)

where ξi ∈ R2 is the position of the ith agent in a target
formation.3 The MAF design problem is to achieve the best
formation accuracy under resource constraints through opti-
mizing the sensing strategy and the control policy.

A. Measurement Model

Consider all the measurements up to the current time slot
denoted by r = {r−,d}, where r− represents the existing
measurements that are gathered in previous time slots, and
d = {dij : (i, j) ∈ E} collects the measurements obtained in
the current time slot. Here we denote by (i, j) the measurement
link between agent i and j, and by E the set of all links that
can be activated within the current formation.

For simplicity, we consider d = {dij : (i, j) ∈ E} to be the
distance measurements between neighboring nodes through
RTT of wireless ranging signals, and the distance measurement
between agent i and j is modeled as

dij =
∥∥xi − xj∥∥+ nij (3)

where the measurement noise nij ∼ N (0, ς2ij) is assumed
independent for different inter-node pairs with the variance
determined by the spectrum resource allocated to the mea-
surement.

Note that the measurements r− are related to the current
formation via the state evolution, while the measurements
d directly characterize the network geometry of the current
formation. Given the current formation x, the two types of the
measurements are (conditionally) independent, i.e. p(r;x) =
p(r−;x) p(d;x). Hence, it follows that the overall Fisher
information matrix (FIM) for the current formation can be
decomposed as

J(x) = E
{

[∇ ln p(r;x)][∇ ln p(r;x)]T
}

= JA(x) + Jd(x)
(4)

where JA and Jd denote the contributions of the existing and
current measurements, given by

JA(x) = E
{

[∇ ln p(r−;x)][∇ ln p(r−;x)]T
}

(5)

Jd(x) = E
{

[∇ ln p(d;x)][∇ ln p(d;x)]T
}

(6)

2The examples of position related measurements include inter-node dis-
tances and directions as well as nodes’ velocities and accelerations.

3The target formations indeed form a set of vectors because of the
translation and rotation operations, and the formation ξ is one element of
the target formations. The details will be discussed in Section III-A.
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Fig. 2. Examples for rigidness. Given the lengths of all links, the network
geometry in (a) and (b) cannot be uniquely determined due to the uncertainty
of the agents denoted by red.

respectively. A detailed derivation for Jd(x) in general cases
can be found in [41], and the results are presented in Appendix
A.

Remark 1: To ensure the network geometry can be uniquely
determined by the measurements, a sufficient (although not
necessary) condition is that the formation with link set E is
globally rigid [31]. Generally speaking, if each agent can make
measurements with another three agents within the formation,
this requirement is satisfied. An example to explain the term
is presented in Fig. 2.

B. Control Model

The movement of the agents is composed of the global
displacement and local adjustment. The global displacement is
common to all agents so that the entire formation moves along
a planned trajectory. Since such common movement does not
change the geometry of the actual formation, we can assume
the global displacement is zero without loss of generality
(w.l.o.g.). For the local adjustment, the agents perform local
formation control on their movements collaboratively to adjust
the actual formation to the target formation.

The control vector on agent i’s movement is denoted by
ci,4 and the position of agent i after control is modeled as

x+i = xi + ci + wi (i = 1, · · · , N) (7)

where the control error wi ∼ N (02, σ
2I2) is assumed i.i.d.

for all agents and different time slots. The positions of the
agents are random variables due to the uncertainty of the
control error. For a compact representation of (7), we define
the aggregated vectors for the corresponding terms in the
expression: the formation after control, which is called the
posterior formation, is denoted by x+; the control vector and
error vector for the entire formation are

c = [cT1 cT2 · · · cTN ]T (8)

w = [wT
1 wT

2 · · · wT
N ]T (9)

respectively.

C. Optimization Formulation

The performance of MAF relies on the accuracy of the
position estimates in the network localization procedure. Note

4In practical systems, control on the acceleration can be derived by
designing the corresponding double-integrator controller [42].
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that the localization accuracy of the agents can be signif-
icantly improved through optimal allocation of the limited
spectrum resource for wireless inter-node measurements [22].
Hence, for MAF applications, it is also desirable to allocate
different amount of spectrum resource for different inter-node
measurements based on their contributions to the formation
performance.

In network localization, two key factors that affect resource
allocation are 1) network geometry, and 2) the position uncer-
tainties of the agents and their correlations. In practice, these
two factors are described by the estimated positions of the
agents x̂, and the FIM of the existing measurements JA [22].5

Moreover, there exists a distinct feature in MAF compared
to network localization, i.e. the localization errors of different
agents have various impacts on the formation performance in
view of the target formation ξ, as will be shown in Section
IV. To conclude, all these three factors need to be taken into
account when designing the sensing strategy for the MAF.

Definition 1 (Sensing Strategy): A sensing strategy S refers
to the rule to perform measurements based on the estimated
formation x̂, the previous information JA, and the target
formation ξ, i.e.

S : (x̂,JA, ξ) 7→ d. (10)

Once the measurements are obtained, it can provide extra
information to estimate the current formation. Most existing
studies for formation control determine the control vector
based on the estimated formation x̂ and the target forma-
tion ξ [32], while ignoring the statistical information in the
measurements [43]. Such statistical information can be used
to identify the accuracy of the estimated formation and the
correlations between the estimation errors of different agents.
Therefore, it is beneficial for the MAF performance to leverage
the measurements r when designing the control vector.

Definition 2 (Control Policy): A control policy C refers to
the rule to determine the control vector from the estimated
formation x̂, the target formation ξ, and all the original
distance measurements r, i.e.

C : (x̂, ξ, r) 7→ c. (11)

Fig. 3 illustrates the ILC scheme, where the sensing strat-
egy and the control policy are jointly designed. In network
localization, the goal of MAF, i.e. target formation ξ, affects
the way of spectrum resource allocation. In formation control,
the original measurements are exploited to provide statistical
information, such as the confidence of the estimates. Hence,
the posterior formation is given by

x+ = x+ c(r) + w. (12)

To evaluate the performance of MAF, the next section will
present a loss function `(x, ξ) to characterize the difference
between formations x and ξ. The goal of this paper is to design
the sensing strategy and the control policy that minimizes the

5In this paper, the actual formation x is used for theoretical analysis. Since
it is not available in practice, we employ the estimated formation x̂ as a
substitute for the actual formation for implementation, e.g. in Algorithm 1
and the equations therein.
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Fig. 3. The flow diagram of the ILC scheme. This scheme employs the
proposed formation error as the performance metric, which quantifies the
difference between the actual and target formations. In addition, the ILC
scheme designs the network localization and the formation control procedures
in an integrated way by 1) taking the target formation into account in the
sensing strategy, and 2) using the original measurements when determining
the control vector.

expected loss between the posterior formation and the target
formation under given spectrum resources, i.e.

P : minimize
S ,C

E{`(x+, ξ)}

subject to spectrum resource R
(13)

where the expectation is taken over the measurement noises
and the control errors.

III. PERFORMANCE METRIC

In this section, we propose a new metric (formation error) to
characterize the difference between the actual formation and
the target one, which is the minimum squared distance between
the two formations for arbitrary translation and rotation.

A. Formation Distance

In a wide range of applications carried out by multi-agent
systems, only the geometry of the actual formation is relevant.
In this context, two formations are considered equivalent if
they can be transformed into each other through translations
and rotations. The conventional squared localization errors
cannot fully characterize the difference between two forma-
tions in this sense, and a new performance metric, which is
invariant to the translation and rotation operators, is proposed
in this section. First of all, we define the equivalent formation
set as the collection of all equivalent formations in terms of
network geometry, which is recognized in the literatures of
relative localization [24] and formation control [31].

Definition 3 (Equivalent Formation Set): The set that
contains all the formations equivalent to the formation q is
called the equivalent formation set of q, denoted by F(q). Its
subset that collects all the formations centered at the origin is
called the basic equivalent formation set, denoted by F0(q).

According to Definition 3, the equivalent formation set of
a two-dimensional formation q can be expressed as

F(q) =
{
G(ϑ)q + 1N ⊗ k : k ∈ R2, ϑ ∈ [0, 2π)

}
(14)
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where G(ϑ) = IN ⊗G2(ϑ) with the rotation matrix

G2(ϑ) =

[
cosϑ − sinϑ
sinϑ cosϑ

]
(15)

and ⊗ denotes the Kronecker product. In other words, the
elements in the equivalent formation set are obtained by
rotating the entire formation q by angle ϑ and then translating
the resulting formation by vector k. We can observe from
(14) that given the formation q, its equivalent formation set
has three dimensions of freedom, with two accounting for
translation and the other one for rotation. Hence, the dimension
of the set F = {F(s) : s ∈ R2N} is 2N − 3.

Next, we derive the expression for the basic equivalent
formation set. We first define that

D =
1

N

(
dxd

T
x + dyd

T
y

)
(16)

where dx = 1N ⊗ [1 0]T and dy = 1N ⊗ [0 1]T. For a
general formation q, Dq = 1N ⊗ qc with qc representing the
center of the formation q. As a result, the basic formation q̃,
which is the coordinate of the formation q in its center-of-mass
reference frame, is given by

q̃ = (I −D)q. (17)

One can verify that the formation q̃ centers at the origin.
With the centers fixed, the formations in F0(q) can only be
equivalent to each other by rotation, and it indicates that

F0(q) =
{
G(ϑ)(I −D)q : ϑ ∈ [ 0, 2π)

}
. (18)

which has only one dimension of freedom.6

Definition 4 (Formation Distance): The formation distance
between p and q is the Euclidean distance between the
equivalent formation sets F(p) and F(q), defined as7

d(p, q) = min
s∈F(p), t∈F(q)

‖s− t‖. (19)

The above optimization problem can be solved analytically,
leading to a closed-form expression for d(p, q) shown in the
following proposition.

Proposition 1: The formation distance between formations
p and q is given by

d(p, q) =
(
‖p̃‖2 + ‖q̃‖2 − 2‖q̃‖

√
p̃TQp̃

)1/2
(20)

where

Q = ‖q̃‖−2(q̃q̃T + q̃⊥q̃
T
⊥) (21)

with q̃⊥ = Rq̃ in which R = G(π/2).
Proof: See Appendix B.

Note that the equivalent formation sets generated by equiv-
alent formations are unique, and the formation distance is
defined for two equivalent formation sets, which indicates
that the formation distances calculated by equivalent pairs of

6The above definitions for qc, q̃ and F0(q) apply to all formations.
7Note that we slightly abuse the notation d(p, q) for simplicity. Strictly

speaking, the formation distance function is defined on F ×F , i.e. it is w.r.t.
two equivalent formation sets F(p) and F(q), denoted by d(F(p),F(q)).

formations are equal.8 The property is verified in the following
proposition.

Proposition 2: For any formations pe ∈ F(p) and qe ∈
F(q), the formation distance between pe and qe is given by

d(pe, qe) = d(p, q). (22)

Proof: Assume w.l.o.g. that all the related formations, i.e.
p, pe, q and qe are centered at the origin. Then according to
definition (18), we have

pe = G(ϑ)p = [p Rp ]u(ϑ) (23)

for some ϑ with u(ϑ) = [cosϑ sinϑ]T. It follows that

‖pe‖ = ‖p‖ (24)

since ‖p‖ = ‖Rp‖ and pT(Rp) = 0; and

‖q‖2
(
pTe Qpe

)
=
(
pTe q

)2
+
(
pTe Rq

)2
=

(
u(α)T

[
pTq
pTRTq

])2

+

(
u(α)T

[
pTRq
pTRTRq

])2

=

(
u(α)T

[
pTq
−pTRq

])2

+

(
u(α)T

[
pTRq
pTq

])2

=
(
pTq

)2
+
(
pTRq

)2
= ‖q‖2

(
pTQp

)
(25)

or equivalently

pTe Qpe = pTQp (26)

where the third equality in (25) holds since RT = −R
and RTR = I . Substituting (24) and (26) into (20) leads
to d(p, q) = d(pe, q). Finally, since the formation distance
is symmetric by Definition 4, it follows that d(p, q) =
d(pe, q) = d(q,pe) = d(qe,pe) = d(pe, qe).

In the following proposition, we show three properties of
the proposed formation distance. Again, we emphasize that
the metric function d(· , ·) is defined on F × F .

Proposition 3: The formation distance d(p, q) is a metric
on F = {F(s) : s ∈ R2N}, i.e. d(p, q) satisfies the properties
of identity of indiscernibles, symmetry, and triangle inequality.

Proof: See Appendix C.
Proposition 1 implies that the formation distance between

two formations is only related to the corresponding formations
in the basic equivalent formation sets. Therefore, in the rest
of the paper, we can assume the formations centered at the
origin w.l.o.g. and use the notation p for p̃ for simplicity.

B. Formation Error

Based on the proposed formation distance, we can further
define the formation error to characterize the difference be-
tween the actual formation and the target formation.

Definition 5 (Formation Error): The formation error be-
tween the actual formation x and the target formation ξ is
defined as the squared formation distance between them, i.e.

`(x, ξ) = d(x, ξ)2. (27)

8Two pairs of formations are called equivalent if all the corresponding
entries are equivalent formations.
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The formation error can be interpreted as the least cost of
control to form the actual formation as the target formation.9

Substitute (20) into the above definition, and the formation
error can be obtained in a closed-form expression as

`(x, ξ) = ‖x‖2 + ‖ξ‖2 − 2‖ξ‖
√
xTΞx (28)

where

Ξ = ‖ξ‖−2(ξξT + ηηT) (29)

with η = Rξ. Note that η is another target formation that can
be achieved by rotating the formation ξ by ϑ = π/2, and it
follows that ‖η‖ = ‖ξ‖ and ξTη = 0. Thus, Ξ is a projection
matrix, which denotes the operation that projects a formation
of N agents into the subspace

P := span{ξ,η} (30)

where {ξ,η} forms a set of orthogonal basis.
Proposition 4: The basic equivalent formation set of the

target formation ξ is the set of points lying on the circle of
radius ‖ξ‖ centered at the origin in the hyperplane P .

Proof: For a target formation ζ centered at the origin, i.e.
ζ ∈ F0(ξ), according to (18), it can be expressed as

ζ = G(ϑ)ξ =
[

cos(ϑ)I + sin(ϑ)R
]
ξ =

[
ξ η

]
u(ϑ). (31)

Thus, ζ ∈ P and ‖ζ‖ = ‖ξ‖, and vice versa.
An equivalent form for the formation error is derived from

the perspective of subspaces in the next proposition, followed
by a geometrical interpretation.

Proposition 5: The formation error can be decomposed as

`(x, ξ) = ‖x⊥‖2 +
(
‖x//‖ − ‖ξ‖

)2
(32)

where x// = Ξx and x⊥ = (I − Ξ)x are the components
of the formation x in the subspace P and its orthogonal
complementary P⊥, respectively.

Proof: By the orthogonal projection theorem, the forma-
tion x can be decomposed as x// within the range and x⊥
within the kernel of the projection matrix Ξ. It follows that

‖x‖2 = ‖x//‖2 + ‖x⊥‖2. (33)

Since Ξ is both symmetric and idempotent, we have

xTΞx = [Ξx]T[Ξx] = ‖x//‖2. (34)

Substituting the above terms into (28) leads to (32).
Proposition 5 shows that the formation error can be decom-

posed as the orthogonal error and the parallel error, as shown
in Fig. 4. The orthogonal error is the squared distance from
the formation to the hyperplane P , and the parallel error is the
squared distance from the projection x// to the circle of target
formations. Note that the rotation of the formation is irrelevant
in the formation error, since the target formation with different
rotations generates a circle in the plane P .

Remark 2: Recall that the formations are assumed to be
centered at origin, or otherwise one can take x̃ = (I −D)x

9In this paper, the cost of control refers to the sum of squared distances
that each agent moves during the formation control procedure.

O‖ξ‖
(‖x//‖ − ‖ξ‖)2

‖x⊥‖2

True Formation x

P

(D ⊕ P)⊥

Fig. 4. Geometrical interpretation: The target formation is represented by a
circle with radius ‖ξ‖ in P , and the formation error can be decomposed as the
sum of the parallel error in P and the orthogonal error in (D⊕P)⊥, where
P = span{ξ,η}, D = span{dx,dy}, and ⊕ denotes the sum of subspaces.
Note that the entire space in this figure is D⊥ of dimension 2N − 2.

instead of x. From the perspective of subspaces, D is also a
projection matrix that projects a formation into the subspace

D := span{dx,dy} . (35)

Furthermore, the two subspaces are orthogonal, i.e. D ⊥ P ,
since ξTdx = ξTdy = ηTdx = ηTdy = 0, and the entire
space in Fig. 3 is the complementary subspace of D.

C. Extensions of Formation Error

1) Scalable Formations: In scenarios where only the angle
measurements between the agents are available [24], a forma-
tion that can be achieved by scaling some target formation is
also regarded as a target formation. In this case, the equivalent
formation set of the target formation ξ is defined as

Fs(ξ) = {βs+ 1N ⊗ k : s ∈ F0(ξ), β ∈ R}. (36)

Following the definition for the formation error, we can
derive a closed-form expression for scalable formations in an
analogous way. We next present another method to derive the
formation error, which leverages the insights of the geometri-
cal interpretation and the perspective of subspaces.

Proposition 6: For scalable target formations, the formation
error is only composed of the orthogonal error, i.e.

`s(x, ξ) = ‖(I −Ξ)x‖2. (37)

Proof: As shown in Proposition 4, the basic equivalent
formation set F0 forms the target circle, and it can be proved
that the basic equivalent formation set in the scalable case F0

s
is the subspace P . First, we show that F0

s ∈ P: since ∀ι ∈ F0
s

has the form of ι = βs for some β ∈ R and s ∈ F0(ξ) ∈ P ,
it follows that ι ∈ P; then we show that P ∈ F0

s , and the
proof is an inverse to the previous procedure.

Thus, the parallel error vanishes, and the formation error is
equal to its orthogonal part as shown in (37).

2) Three-dimensional Formations: In aerial or marine sce-
narios, the target formations usually can be rotated around
a given axis in the space, typically the vertical axis. The
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matrix that rotates a formation x ∈ R3N around an unit axis
z = [z1 z2 z3]T by ϑ is given by

Gz(ϑ) = I3N + (sinϑ)Z + (1− cosϑ)Z2 (38)

where Z is the extended cross product matrix of z, i.e.

Z = IN ⊗

 0 −z3 z2
z3 0 −z1
−z2 z1 0

 . (39)

Thus, the equivalent formation set of the target formation ξ is

F3(ξ) = {Gz(ϑ)ξ + 1N ⊗ k : k ∈ R3, ϑ ∈ [0, 2π)}
= {(sinϑ)Zξ + (cosϑ)Z2ξ + 1N ⊗ k

: k ∈ R3, ϑ ∈ [0, 2π)}.
(40)

It can be shown that the basis {Zξ,Z2ξ} are orthogonal to
each other since (Zξ)T(Z2ξ) = −ξTZξ = 0, and

‖Zξ‖ = ‖Z2ξ‖ =
√
‖ξ‖2 − (ξTz)2. (41)

The equivalent formation set for three-dimensional forma-
tions (40) is the same with (14) except a minor difference in
the definition of the basis. Thus, the formation error is given
by

`3(x, ξ) = ‖(I3N −Ξ3)x‖2 + (‖Ξ3x‖ − ‖Zξ‖)2 (42)

where

Ξ3 = ‖Zξ‖−2(−ZξξTZ +Z2ξξTZ2). (43)

Similar to Proposition 4, all the target formations centered at
the origin form a circle of radius ‖Zξ‖ in the hyperplane
P3 = span{Zξ,Z2ξ} in the three-dimensional case.

IV. THEORETICAL BOUNDS FOR MFE

In this section, we first define the MFE to characterize the
performance of MAF for random formations, and then derive
the upper and lower bounds for the MFE.

A. MFE for Random Formations

Recall the posterior formation given in (12). Due to the
measurement noises and the control errors, the posterior for-
mation is a random vector. Thus, we extend the formation error
metric to this stochastic case, and define MFE to characterize
the mean performance of MAF for a random formation.

Definition 6 (MFE): The MFE between a random formation
x and the target formation ξ is given by

¯̀= Ex{`(x, ξ)}. (44)

Since the formation error can be decomposed as (32) and
the expectation operator is linear, the MFE for the posterior
formation can be written as

¯̀= ¯̀⊥ + ¯̀
// (45)

where ¯̀⊥ and ¯̀
// are called the expected orthogonal error and

the expected parallel error, given respectively by

¯̀⊥ = Er,w⊥

{
‖x⊥ + c⊥(r) + w⊥‖2

}
(46)

¯̀
// = Er,w//

{
(‖x// + c//(r) + w//‖ − ‖ξ‖)2

}
(47)

in which c⊥ and c// are the components of the control policy
c in the subspace (D ⊕ P)⊥ and P; w⊥ = (I −D − Ξ)w
and w// = Ξw are the components of the aggregated control
error w.

Recall that the control error w follows a Gaussian distribu-
tion, we can verify that[

w⊥
w//

]
∼ N

(
04N , σ

2

[
I −D −Ξ O

O Ξ

])
. (48)

In other word, the components of the control error in both
subspaces, i.e. w⊥ and w//, are independent. Combining with
the fact that the error components ¯̀⊥ and ¯̀

// contribute to the
MFE in an uncorrelated manner (45), we are allowed to design
the control policies c⊥ and c// in the two subspaces separately.

Definition 7 (MFEB): The mean formation error bound
(MFEB) F is the lower bound for the MFE by the optimal
position estimation and control vector, i.e.

F = min
c

¯̀. (49)

Since the MFE can be decomposed as (45) and the control
policies can be designed separately, the MFEB can be decom-
posed as

F = F⊥ + F// (50)

where

F⊥ = min
c⊥

¯̀⊥ and F// = min
c//

¯̀
// (51)

are called the expected orthogonal error bound and the ex-
pected parallel error bound, respectively.

B. Bounds for the MFEB

In light of (50) and (51), we will first derive each part of
the MFEB, as well as the components of the control policy in
the subspaces; then a unified theorem presenting the overall
MFEB and the corresponding control policy is provided.

1) Expected Orthogonal Error Bound: Since the measure-
ment noises and the control errors are assumed independent,
the expected orthogonal error in (46) can be simplified as

¯̀⊥ = Er{‖x⊥ + c⊥(r)‖2}+ (2N − 4)σ2. (52)

The following proposition presents the form of the expected
orthogonal error bound.

Proposition 7: For arbitrary control policies, the expected
orthogonal error ¯̀⊥ is lower bounded by

F⊥ = tr
{

(I −D −Ξ)J(x)−1
}

+ (2N − 4)σ2 (53)

where J(x) is the FIM of the actual formation x, given by
(4). The lower bound is achieved under the control policy

c?⊥(r) = −(I −D −Ξ)J(x)−1∇ ln p(r;x)− x⊥. (54)

Proof: See Appendix D-A.
The orthogonal error is related to the component x+⊥ in

the subspace (D ⊕ P)⊥. In (53), the first term corresponds
to the projection of the localization error characterized by
tr
{
J(x)−1

}
into this subspace; and the second term repre-

sents the control error in this subspace, and the coefficient
2N − 4 is due to the fact that dim(D ⊕ P)⊥ = 2N − 4.
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2) Expected Parallel Error Bound: In this section, we will
first derive the upper bound for the expected parallel error
bound F//. For any given observation vector r, the random
variable ‖x// + c//(r) + w//‖ follows the Rician distribution.10

It follows that its mean value satisfies

Ew//
{‖x// + c//(r) + w//‖} ≥ ‖x// + c//(r)‖. (55)

Applying the above inequality to (47), we can obtain

¯̀
// = Er

{
‖x// + c//(r)‖2

}
+ Ew//

{
wT

// w//

}
+ ‖ξ‖2

− 2‖ξ‖ Er

{
Ew//
{‖x// + c//(r) + w//‖ | r}

}
≤ Er{(‖x// + c//(r)‖ − ‖ξ‖)2}+ 2σ2

(56)

for any control policy c//. It follows that

0 ≤ F//≤ min
c//

Er{(‖x// + c//(r)‖ − ‖ξ‖)2}︸ ︷︷ ︸
L//

+2σ2 (57)

where L// accounts for the effect of the measurement noise on
the expected parallel error.

Proposition 8: For arbitrary control policies, the upper
bound of the the expected parallel error bound is given by
F// = L// + 2σ2 with

L// = tr

{(
Ξ

2

)
J(x)−1

}
− 1

2

∥∥∥∥[tr{P1J(x)−1
}

tr
{
P2J(x)−1

}]∥∥∥∥ (58)

with P1 = ‖ξ‖−2(ξξT−ηηT) and P2 = ‖ξ‖−2(ξηT+ηξT).
The upper bound is achieved under the control policy

c?//(r) = −
[
‖ξ‖+∇ ln p(r;x)TJ(x)−1κ

] κ

‖κ‖
− x// (59)

where κ = Λu(ϑ?) with

ϑ? =
1

2
arctan

tr
{
P2J(x)−1

}
tr {P1J(x)−1}

. (60)

Proof: See Appendix D-B.
As shown in the proof, the intermediate expression for L//

is given by

L// = min
ϑ
u(ϑ)T[ΛTJ(x)−1Λ]u(ϑ) (61)

where Λ = [ξ η]/‖ξ‖. Note that the parallel error is related
to the component x+// in P , which only has two dimensions
of freedom and is the column space of Λ. By the formula of
parameter transformation for the Cramér-Rao bound (CRB)
[44, Chapter 2.4, Property 5], the term ΛTJ(x)−1Λ is the
CRB for x+// . The optimization problem in (61) finds the
direction on which the component of x+// has the minimum
variance, and the other dimension of freedom corresponding
to the rotation is eliminated.11

10This can be proved by expressing the deterministic part x//+ c//(r) and
the random part w// under the orthogonal basis {ξ,η}, and it can be shown
that the two coordinates of w// are i.i.d. Gaussian variables.

11Note that the direction of the vector κ is the same with the eigenvector
of second largest eigenvalue of matrix ΞJ(x)−1Ξ.

3) Bounds of the MFEB: Based on Proposition 7 and 8,
the lower and upper bounds for the MFEB are given in the
following theorem.

Theorem 1: For arbitrary control policies, the MFEB F is
bounded by

F ≤ F ≤ F (62)

with F = F⊥ given in (53), and

F = tr

{(
I −D − Ξ

2

)
J(x)−1

}
− 1

2

∥∥∥∥[tr{P1J(x)−1
}

tr
{
P2J(x)−1

}]∥∥∥∥
+ (2N − 2)σ2. (63)

where P1 and P2 are defined in Proposition 8. The upper
bound can be achieved under the control policy

c?(r) =
[
‖ξ‖+∇ ln p(r;x)TJ(x)−1κ

] κ

‖κ‖
− (I −D −Ξ)J(x)−1∇ ln p(r;x)− x.

(64)

Proof: Combining F = F⊥ + F//, (57) and the results of
Proposition 7 and 8 directly leads to (62).

C. Discussions and Special Cases

Both the lower bound (53) and the upper bound (63) for the
MFEB contain two parts. The first part exhibits the effect of
the localization error, where MAF is affected by the quality
of the measurements in the form of J(x)−1. The second
part indicates the effect of the control error, which is in
the form of (2N − ε)σ2. Compared with the total control
error for a network of N free agents, i.e. 2Nσ2, there are
ε ∈ [2, 4] dimensions subtracted. The main reason is due to the
invariance of the formation error to the translation and rotation
operators, which removes ε0 = 3 dimensions of freedom.

Due to the convoluted coupling between network local-
ization and formation control, the exact localization-induced
MFEB grows with J(x)−1 at a rate between the corresponding
parts in the upper bound and the lower bound, and the exact
control-induced MFEB can only be constrained in the interval
[2N − 4, 2N − 2]σ2. However, when either the control error
or the localization error is absent, the effect resulted from the
coupling of the two procedures vanishes. Therefore, in these
two special cases, the exact MFEB, rather than its bounds, can
be exactly derived.

Case A (Accurate Control): The system is free of the control
error and only affected by the localization error. The MFE is
obtained by setting w⊥ = w// = 0 when applying (45), i.e.

¯̀= Er

{
‖x⊥ + c⊥(r)‖2 + (‖x// + c//(r)‖ − ‖ξ‖)2

}
. (65)

To derive the bound for the first term, we apply Proposition
7 and set σ = 0 in (53), and this bound is achieved with
the control policy (54). On the other hand, Proposition 8
directly gives the bound for the second term in (58) and the
corresponding control policy (59). To sum up, the MFEB in
this case is given by

FAC = tr

{(
I −D − Ξ

2

)
J(x)−1

}
− 1

2

∥∥∥∥[tr{P1J(x)−1
}

tr
{
P2J(x)−1

}]∥∥∥∥
(66)
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which can be achieved by the control policy (64).
Case B (Accurate Localization)12: The actual formation is

known in this case, and the MFEB can be derived by designing
the optimal control policy according to the geometrical insight
of the formation error provided in Fig. 4 and Proposition 5.
The orthogonal control vector can be designed as c⊥ = −x⊥,
which leads to an expected orthogonal error of (2N − 4)σ2;
and the expected parallel error is given by

¯̀
//(ν) = ν2 −

√
2πσ‖ξ‖Lag1/2

(−ν2
2σ2

)
+ ‖ξ‖2 + 2σ2 (67)

where ν = ‖x// + c//‖ and Lag1/2(·) denotes the Laguerre
function of order 1/2. It can be verified that ¯̀

//(ν) is convex
w.r.t. ν2, and thus there exists a unique optimal solution ν?

that minimizes the above expression, given by

ν? = max
{[
− 2σ2 g

(
− 2σ√

2π‖ξ‖

)]1/2
, 0
}

(68)

where g is the inverse of the first-order derivative of Lag1/2(·).
Thus, the MFEB is given by

FAL = ¯̀
//(ν

?) + (2N − 4)σ2 (69)

with the function ¯̀
//(ν) defined in (67). The MFEB can be

achieved under the control policy13

c? =
ν?

‖ξ‖
[
ξ η

]
u(ϑ)− x, ∀ϑ ∈ [0, 2π]. (70)

Remark 3: For the extended definitions of the formation
error given in Section III-C, their bounds are provided as
follows. As proved in Section III-C1, the MFE for scalable
formations only contains the orthogonal error (37), and thus
the MFEB is given by Fs = F⊥. For three-dimensional
formations, the expression of the MFEB (62) still holds, but to
replace ξ byZξ and η byZ2ξ in the corresponding definitions
of the matrices Ξ, P1 and P2.

V. INTEGRATED LOCALIZATION AND CONTROL

In this section, we develop the ILC algorithm for MAF as
shown in Algorithm 1, based on the analytical results derived
in the previous section. A sensing strategy and control policy
is designed for high-accuracy MAF under limited spectrum
resource. Again, we clarify that to implement the developed
algorithm in practice, we employ the estimated formation x̂ as
a substitute for the actual formation x, such as in the related
FIMs in (73) and (74) as well as the control vectors by (64),
(70) and (77).

A. Sensing Strategy

As observed from (53) and (63), both the upper bound and
lower bound of the MFEB are closely related to the FIM.
The FIM reflects the quality of the measurements, which
is determined by the spectrum resource allocation schemes.
Inspired by this relationship and the constraint on the spectrum

12The derivation for the conclusions in this case was reported in [40].
Details are omitted here due to space limitation.

13The MFEB can be achieved as long as x+// lies in the circle of radius ν?
in the hyperplane P .

Algorithm 1 ILC Algorithm for MAF
1: for t = 1 : T do
2: Allocate the spectrum resource according to (75) and

obtain the measurements r ;
3: Estimate the formation using Bayesian filtering;
4: Determine the control vector c by (64) or (70);
5: for i = 1 : N do
6: Each agent controls itself to the target position;
7: end for
8: Calculate the FIM JA for the next time slot.
9: end for

resource, we introduce w as the allocation vector that collects
wij for all links, which denotes the amount of spectrum
resource allocated to link (i, j); and W0 as the total spectrum
resource.14 Besides, we employ the notation J(x;w) to em-
phasize that the FIM (4) is a function of the allocation vector
w. More explicitly,

J(x;w) = JA +
∑

(i,j)∈E

wijJij(x) (71)

where JA is the information provided by the existing measure-
ments (5), which is fixed for the current time slot; and Jij(x)
is given by (80).

By optimizing the sensing strategy w, the MFEB can be
reduced. Here, we adopt the upper bound F given by (63) as a
relaxation of the exact MFEB, and formulate the optimization
problem w.r.t. the sensing strategy as minimizing F while
satisfying the constraint on spectrum resource, i.e.

P0 : minimize
w∈R|E|

+

F
(
J(x;w)−1

)
subject to ‖w‖1 = W0.

(72)

Due to the non-linear relationship between the upper bound
F and J(x;w)−1, the above optimization problem (72)
is difficult to solve. Hence, we approximate the objective
function F (J(x;w)−1) by its first-order Taylor expansion at
J(x;w)−1 = J−1A , given by

F
(1)(

J(x;w)−1
)

≈F (J−1A ) +∇F (J−1A )
(
J(x;w)−1 − J−1A

)
= tr

{
(I −D −Ξ/2 +H)J(x;w)−1

}
+ C

(73)

where C denotes the terms unrelated to w, and

H = −
tr
{
P1J

−1
A

}
P1 + tr

{
P2J

−1
A

}
P2

2

√
tr
{
P1J

−1
A

}2
+ tr

{
P2J

−1
A

}2 . (74)

Mathematically, the first-order Taylor approximation is valid
when F is close to a linear function, and J(x;w)−1 does
not deviate too much from J−1A . Note that although F is not
strictly linear, it is on a linear order w.r.t. J(x;w)−1, and thus
it is reasonable to adopt a linear model for approximation.15

14When the allocation vector w is specified, we can determine the partition
of the band {Sij : (i, j) ∈ E} by applying (82) reversely, and then use (81)
to design the transmission signals for each ranging link. See Appendix A.

15If the conditions do not hold, one can employ the lower bound for the
MFEB (53) as the objective function in P0 (although not as tight as the upper
bound to approximate the MFEB), which is strictly linear w.r.t. J(x;w)−1.
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In the sense of minimizing the approximate upper bound
of MFEB, the optimal strategy for spectrum allocation is the
solution to

P1 : minimize
w∈Rm

+

F
(1)(

J(x;w)−1
)

subject to ‖w‖1 = W0

(75)

The above strategy is called the formation-based allocation
for abbreviation in this paper.

Proposition 9: The optimization problem for formation-
based allocation strategy is convex w.r.t. the vector w.

Proof: See Appendix E.

B. Control Policy

We next design two control policies, namely the loosely-
and the tightly-integrated formation control.
• The loosely-integrated control regards the estimated for-

mation provided by network localization as the actual
formation, and designs the control vector based on the
estimated formation, as discussed in Section IV-B3 Case
B. The control vector is given by (70);

• The tightly-integrated control adopts the form of the
control policy (64), which can achieve the approximated
upper bound of the MFEB in theory. This control policy
incorporates the statistical information of the measure-
ments in the designed control vector.

In dynamic scenarios, to determine the tightly-integrated
control, the term ϕt = p(r(1:t);x(t)) need to be calculated
over time, where r(1:t) denotes all the observations from time
slot 1 to t, and x(t) denotes the current formation. This can
be obtained in a recursive form

ϕt = p(r(t);x(t))

∫
p(x(t−1);x(t))ϕt−1dx(t−1). (76)

Note that when deciding the control vector via (64), a key step
is to derive the term ∇ ln p(r;x). With the above expression
for p(r(1:t);x(t)), this term can be calculated as

∇ lnϕt =

∫
∇p(x(t−1);x(t))ϕt−1dx(t−1)∫
p(x(t−1);x(t))ϕt−1dx(t−1)

+∇ ln p(r(t);x(t))

(77)

where p(x(t−1);x(t)) is obtained from the movement model
(7), and ∇ ln p(r(t);x(t)) is derived by the measurement
model (3). The integrals can be calculated numerically by
methods such as Monte-Carlo integration.

Remark 4: Since the information related to the position and
orientation of the formation is absent in the discussed scenario,
the absolute localization error bound J(x)−1 may diverge over
time, and so is the recursive expression (76). To overcome
this difficulty, we incorporate extra regularization constraints
to eliminate the three dimensions accounting for translation
and rotation. In the beginning of time slot t + 1, we update
ϕt(x) = ϕt(x1, · · · ,xn) by:
• Calculate mi =

∫
xiϕt(x)dx for agent i = 1 and 2;

• Update the function by ϕt(z) ← ϕt(x) where z =
G(ϑt)(x− 1N ⊗m1) with u(−ϑt)T(m2 −m1) = 0.

The purpose of the above operations is to construct a dynamic
filtering frame, in which the “center” of agent 1 locates at
the origin, and the “center” of agent 2 on the y-axis. The
accumulated rotation ϑ(t) =

∑t
τ=1 ϑτ of the filtering frame in

the global frame is recorded, in order to transform the control
vector cf calculated in this frame back to the global frame
cg = G(−ϑ(t))cf. This approach can prevent the error bound
as well as (76) from diverging. A more rigorous analysis of
the above procedure is left for future work.

VI. NUMERICAL RESULTS

Consider a two-dimensional formation of N agents, and we
assume that any pair of agents can make measurements with
each other. The total spectrum resource of the system is set
as W0 = N/3. For the measurement signal with spectrum
resource w, the variance of the ranging noise is ς2/w m2,
where ς2 is the ranging variance per resource unit. Recall that
the variance of the control error is denoted by σ2.

This section is divided into two aspects. Part A and B
validate the performance gains of the proposed algorithms in
a single time slot, where the network includes three agents
and the target formation is a uniform line with the inter-agent
distance of 10 m; part C and D further study the performance
of the ILC scheme in dynamic scenarios, and the effects of
more general formation geometries and system parameters.

A. Control Policy

First, we compare the MFEs that can be achieved by
different control policies, when measurements of various ac-
curacy are provided. The proposed loosely- and the tightly-
integrated control policies are compared with a potential-based
approach [32], where agent i determines its target position by
minimizing the potential function

Vi(x) =
∑
j 6=i

(‖x− x̂j‖ − ‖ξi − ξj‖)2 (78)

in which x̂j is the estimated position of agent j. Three agents
are considered, and the total spectrum resource W0 = N/3 =
1 is uniformly allocated to all the 3 ranging links, i.e. wij =
W0/3 = 1/3 for ∀ (i, j) ∈ E . Therefore, when the ranging
variance is ς2 m2, the variance for each measurement link is
ς2ij = 3ς2 m2; and with different values of ς2, measurements
of different accuracies can be obtained. The agents estimate
their positions by the maximum likelihood criteria.

As shown in Fig. 5, the proposed methods can achieve a
significant performance gain over the potential-based method.
Note that when there exists control error (the dashed batch),
the performance curves are nearly parallel to the corresponding
curves when there is no control error, and thus the gaps
among control policies are almost the same. Then we compare
the proposed control policies when there is no control error,
and the tightly-integrated control outperforms the loosely-
integrated control by about 45% in terms of the MFE.

B. Sensing Strategy

Next we compare the spectrum resource consumption by
different allocation strategies to achieve a given MFE. We
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Fig. 5. The MFEs as a function of the ranging variance ς2 by the potential-
based, the loosely- and the tightly-integrated control. The solid lines are
obtained when the system is free of control error, and the dashed lines are
obtained when the variance of the control error σ2 = 1 m2.

consider a rectangular area of 40 × 20 m2, and the 3 agents
are uniformly distributed within the area. Suppose the agents
are provided with the existing measurements r− = x+n with
n ∼ N (0, 25I) m, where x is the true formation. The ranging
variance is set as ς2 = 1 m2. The formation-based allocation
strategy proposed in Section V-A is compared with another
two strategies:
• The localization-based allocation which aims to mini-

mize tr
{
J(x;w)−1

}
under the same constraints [22];

• The uniform allocation which divides the spectrum
equally for all possible links.

The goal of the first strategy is to minimize the lower
bound of network localization error. By comparing with it,
we exhibit the gain to optimize resource allocation directly
toward the MAF, rather than the localization procedure. The
second strategy serves as a baseline algorithm: it is simple
and the implementation does not require extra computational
effort. Besides, for the succeeding two procedures (estimation
and control), we employ the maximum likelihood criteria and
the proposed tightly-integrated control policy, respectively.

The relationship between the MFE and the amount of the
resource W0 is presented in Fig. 6. We make the following
observations. First, for certain accuracy of the formation,
a large portion of spectrum resource can be saved when
applying the proposed sensing strategy instead of the other
two strategies. Take the MFE ¯̀ = 16 m2 as an example.
For practical algorithms, the required spectrum resources are
respectively 1.73, 2.17 and 2.47 for the three allocation strate-
gies, and hence the proposed allocation strategy can save 20%
of spectrum resource than the localization-based allocation,
and 30% than the uniform allocation; while for theoretical
lower bound, the needed spectrum resource are 0.70, 0.92
and 1.15, and the proposed strategy outperforms the other
two methods by 25% and 40%, respectively.16 Second, the

16Note that the percentage of the spectrum resource reduction does not vary
much for different value of the MFE.
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Fig. 6. The MFEs and the lower bounds as a function of total resource by the
formation-based allocation, the localization-based and the uniform allocation.

theoretical bound of the proposed method is lower than the
other two methods. Note that the proposed strategy only aims
at minimizing the upper bound of the MFEB; however, this
advantage also holds for the lower bound in most scenarios.
Third, the MFE achieved by the applied algorithm is about
50% higher than its theoretical lower bound when the available
resource is W0 = 1.

C. Integrated Design

Next we evaluate the performance gain of the proposed ILC
scheme in dynamic scenarios. We consider target formations
of different agent number N , with the ith agent locating at
10 × [i,mod(i, 2)]T m. The system is observed for T time
slots, which is long enough for the MFE to reach a stable
state. In the experiment, we take T = 150 and use the last 50
time slots to calculate the time-averaged MFE. The proposed
scheme is compared with another two schemes:
• The separate design employs the localization-based allo-

cation strategy in network localization and the loosely-
integrated policy in formation control;

• The baseline employs the uniform allocation strategy and
the potential-based control policy.

The first scheme is proposed to represent the optimal
performance that can be achieved by separately optimizing
each individual procedure: 1) the resource is allocated merely
to optimize the localization; 2) the control vector is optimal
assuming that the formation estimate is accurate. The gain of
integrated design can be exhibited by comparing the proposed
scheme with the first scheme. The second scheme also follows
a separate-design manner, which adopts the basic approaches
in literature and thus can serve as a baseline. In addition, we
suppose that in the estimation phase, the result is generated
from an unbiased Gaussian distribution with the CRB as the
covariance matrix; and we set σ2 = ς2 = 1 m2.

Fig. 7 depicts the time-averaged MFE by the three schemes.
We make the following observations. First, a separate op-
timization for the two procedures can reduce the MFE by
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Fig. 7. The time-averaged MFEs and the corresponding lower bounds as a
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and the baseline scheme.

about 70%, although the lower bound does not reduce by
such a large portion. This result validates the importance
of strategy design in achieving accurate formation under
resource constraints. Second, the MFE can be further reduced
by 30% via the integrated design over network localization
and formation control, which validates that a more rational
resource allocation and information utilization can improve
the accuracy of formation. Finally, the time-averaged MFE of
the ILC scheme grows almost linearly with the agent number.
In other words, as the number of agents increases, the MFE
per agent stays constant for this scheme.17 It implies that
the distortion between the the actual formation and the target
formation is invariant with the formation size.18 Therefore,
we conclude that the integrated scheme is promising to deal
with the MAF task for large formations, and it shows superior
performance than the other two schemes.

D. System Parameters

Finally, we demonstrate the effects of the variance of the
control error σ2 and the ranging noise ς2 on the performance
of the proposed ILC algorithm. We consider a network of 4
agents, with the target formation as a 10 m × 10 m square;
other settings are the same as the previous section.

As can be observed from Fig. 8, the time-averaged MFE
grows with both parameters in a complicated way, due to the
coupling between network localization and formation control.
However, we can employ its theoretical bounds to explain
the phenomenon in a special case, where the variance of the
control error is much larger than that of the ranging noise.

17Recall that the formation error is the sum of the squared distances that all
the agents move. Hence the MFE per agent characterizes how far each agent
deviates from their target positions, which intuitively represents the distortion
of the actual formation from the target formation.

18In network localization, with the same configuration for the total spectrum
resource as is used here, the network localization error (NLE) per agent
is constant (Section “boundedness of error evolution” in [23]). While the
definitions of the MFE and NLE are closely related, Fig. 7 also suggests the
MFE per agent is constant. The rigorous analysis for the linear growth of the
MFE with the agent number is left for future work.
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In this scenario, the historical information vanishes due to the
large control error over adjacent time slots, and thus the CRB
is approximately linear with the variance of the ranging noise
and free of the control error. Then according to Section IV,
the localization-part error is proportional to the CRB, and thus
the variance of the ranging noise; and the control-part error is
proportional to the variance of the control error. This leads to
linear growths of the MFE with respect to both parameters in
the regions as we marked in Fig. 8.

VII. CONCLUSION

In this paper, we established a theoretical framework for
high-accuracy MAF via integrated localization and control.
First, we proposed a new performance metric called the forma-
tion error to quantify the difference between two formations,
and then we obtained a closed-form expression, revealed some
properties, and presented a geometrical interpretation for the
metric. Second, we derived the theoretical bounds for the
MFE for arbitrary control policies, and developed an ILC
algorithm by joint optimization over the network localization
and the formation control procedure. Finally, simulation results
showed that the proposed ILC algorithm can significantly
improve the accuracy of the MAF, and presented the formation
performance under various network parameters.

APPENDIX A
FIM FOR NETWORK LOCALIZATION

Recall that all the ranging links are collected in set E ,
and the measurements in vector d. The received waveform
rij(t) for a ranging link between agent i and j is modeled as
rij(t) = sij(t−delay)+noise, where sij(t) is the transmission
waveform. Then the FIM for the entire formation is given by

Jd(x) =
∑

(i,j)∈E

(∫ ∞
−∞

f2|Sij(f)|df
)
Jij (79)

where Sij(f) denotes the Fourier transform of sij(t), and

Jij =
1

ς2ij

[
(ei − ej)⊗ u(φij)

][
(ei − ej)⊗ u(φij)

]T
(80)
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with ei an N ×1 vectors with all 0’s but 1 in the ith element,
and φij the direction between agent i and j.

Given an aggregated signal S(f) for the entire formation
system, which spans over the band S0, an allocation of the
spectrum resource is to divide S0 into |E| non-overlapping
sub-bands {Sij : (i, j) ∈ E}, and design the transmission
signal on link (i, j) as

Sij(f) =

{
S(f) f ∈ Sij
0 f ∈ S0 \ Sij

. (81)

In this manner, there is no interference between the ranging
signals. The spectrum resource of link (i, j) is defined as

wij =

∫ ∞
−∞

f2|Sij(f)|df =

∫
Sij

f2|S(f)|df (82)

and the total spectrum resource as W0 =
∫
S0 f

2|S(f)|df .

APPENDIX B
PROOF OF PROPOSITION 1

We address the problem (19) by minimizing the squared
formation distance first over t and then over s. Denote the
result of the first step by ϕ(s), which is given by

ϕ(s) = min
k,ϑ

{ N∑
i=1

∥∥si − [G2(ϑ)(qi − q̄) + k̃
]∥∥2} (83)

where si and qi are the position of agent i in formation s and
q, respectively, and q̄ ∈ R2 is the center of the formation q.
Set the derivatives of ϕ(s) w.r.t. k̃ and ϑ be zero, and we can
obtain

{k̃?, ϑ?} =
{
s̄, arctan

q̃T⊥s̃

q̃Ts̃

}
. (84)

Substituting (84) into (83) leads to

ϕ(s) = ‖s̃‖2 + ‖q̃‖2 − 2s̃T(q̃ cosϑ? + q̃⊥ sinϑ?)

= ‖s̃‖2 + ‖q̃‖2 − 2‖q̃‖
√
s̃TQs̃.

(85)

Then we minimize the above function over s ∈ F(p), which
indicates that s̃ = G(ϑ)p̃ for some ϑ ∈ [0, 2π). Substitute the
form into the expression, and it can be shown that

ϕ(s) = ‖p̃‖2 + ‖q̃‖2 − 2‖q̃‖
√
p̃TQp̃ (86)

is a constant function for any s. Thus, d(p, q) =
√

mins ϕ(s)
is equivalent to (20).

APPENDIX C
PROOF OF PROPOSITION 3

We first present another form for the formation distance. It
can be shown that the inequality√

(pTq)2 + (pTRq)2

‖p‖‖q‖
≤ 1 (87)

holds, and thus the left-hand side can be defined as cos θp,q .
Then the formation distance (20) can be rewritten as

d(p, q) =
√
‖p‖2 + ‖q‖2 − 2‖p‖‖q‖ cos θp,q. (88)

This form is consistent with the law of cosines.

First, we prove the identity of indiscernibles for the defined
function, i.e. d(F(p),F(q)) = 0 when F(p) = F(q). Since
the equation holds only when cos θp,q = 1, which indicates
that p ∈ span{q,Rq} ∈ F(q), and thus F(p) = F(q).

Then, we prove that the function is symmetry, i.e. d(p, q) =
d(q,p). Note that R = −RT, and it follows that√

(pTq)2 + (pTRq)2 =
√

(qTp)2 + (qTRp)2. (89)

The above equation directly leads to d(p, q) = d(q,p).
Last, we show that the triangular inequality holds for the

defined function, i.e.

d(p, q) + d(q, s) ≥ d(p, s). (90)

According to (88) and its geometrical interpretation, a suffi-
cient condition for the above inequality is

θp,q + θq,s ≥ θp,s (91)

since a tetrahedron can be constructed under this case. Assume
w.l.o.g. that the norms of all the formations equal to 1, and
they center at origin. To prove (91), we define the left-hand
side of the inequality as a function, and aim to find its minima,
i.e.

min
q

h(q) =
∑

γ∈{p,s}

arccos
√

(qTγ)2 + (qTRγ)2 (92)

subject to qTdx = qTdy = 0, and ‖q‖2 = 1. The Lagrange
function for the constrained optimization problem writes

L(q) = h(q) + λ1q
Tdx + λ2q

Tdy + λ3(qTq − 1). (93)

Set the derivative w.r.t. q be 0, and we obtain

−
∑

γ∈{p,s}

(qTγ)γ + (qTRγ)Rγ√
1− (qTγ)2 − (qTRγ)2

√
(qTγ)2 + (qTRγ)2

+ λ1dx + λ2dy + 2λ3q = 0 (94)

which implies λ1 = λ2 = 0. Thus, the optimal solution q?

can be expressed in the following form

q? = ρ1
[
p Rp

]
u(φ1) + ρ2

[
s Rs

]
u(φ2) (95)

and the parameters ρ1, ρ2, φ1 and φ2 are to be determined.
Use ‖q?‖ = 1, and that the ratios between the coefficients of
p and Rp in (94) and (95) are equal, and it follows that

ρ21 + ρ22 + 2ρ1ρ2 cos θp,s = 1. (96)

By (95) and (96), we can prove that

cosh(q?) = cos θp,s. (97)

Since cos(·) decreases monotonously in [0, π], the above
conclusion is equivalent to θp,q + θq,s ≥ θp,s.

APPENDIX D
PROOF OF PROPOSITION 7 AND 8

We use the variational method over control policies to derive
the expected orthogonal and parallel error bounds. Note that
the expectation is taken over the random measurements r.
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A. Mean Orthogonal Error
The solution is divided into two steps. First, certain as-

sumptions are made to define a subset of control policies, and
the optimal control policy is designed for each case; then we
compare the performance of the optimal control policies and
choose the best among them. The condition is set as∫

(x⊥ + c⊥(r))p(r;x)dr = s (98)

and thus the control policy c⊥ satisfies∫
c⊥(r)p(r;x)dr = s− x⊥. (99)

Note that c⊥(r) is independent with the actual formation x,
then taking derivative w.r.t. xT of both sides gives∫

c⊥(r)∇ ln p(r;x)Tp(r;x)dr = −(I −D −Ξ). (100)

Then we find the optimal solution in the set of the control
policies which satisfy the constraints (99) and (100), that is
denoted by C(s). Suppose c+⊥(r) = c⊥(r) + λg(r) ∈ C(s)
with c⊥(r) ∈ C(s), then the increment λg(r) satisfies∫

g(r)p(r;x)dr = 0 (101)∫
g(r)∇ ln p(r;x)Tp(r;x)dr = O. (102)

According to (46), the expected orthogonal error under control
policy c+⊥(r) is given by (omit (2N − 4)σ2)

¯̀⊥(λ) =

∫
‖x⊥ + c⊥(r) + λg(r)‖2p(r;x)dr (103)

To design the optimal control policy, set the derivative of ¯̀⊥
w.r.t. λ as 0 when λ = 0, and we obtain

2

∫
g(r)T(x⊥ + c?⊥(r; s))p(r;x)dr = 0. (104)

where c?⊥(r; s) is the optimal control in the set C(s). Note
that the function g can be arbitrarily chosen, it follows that

x⊥ + c?⊥(r; s) = m+M∇ ln p(r;x) (105)

where m ∈ R2N and M ∈ R2N×2N . Substitute the above
form into (99) and (100), and we can determine the parameters.
Then the optimal control policy c?⊥(r; s) is given by19

(s− x⊥)− (I −D −Ξ)J(x)−1∇ ln p(r;x) (106)

and the corresponding minimum expected orthogonal error is

L⊥(s) = ‖s‖2 + tr
{

(I −D −Ξ)J(x)−1
}
. (107)

When changing the value of s, all the control policies can
be covered. By the form of the achievable lower bound, we
can assert that when s = 0, the optimal expected orthogonal
error can be achieved, which is given by

L⊥ = tr
{

(I −D −Ξ)J(x)−1
}

(108)

when applying the control policy

c?⊥(r) = −(I −D −Ξ)J(x)−1∇ ln p(r;x)− x⊥. (109)
19If the FIM J(x) is not invertible, the pseudoinverse J(x)† will replace

the inverse J(x)−1 in all the succeeding equations. This convention also
holds for the derivation in the parallel subspace.

B. Mean Parallel Error

Follow the same procedure in Appendix D-A, and suppose
the condition is given by∫

‖x// + c//(r)‖p(r;x)dr = % (110)

and the other constraint on the derivative is∫ {
Ξφ+ ‖x// + c//(r)‖∇ ln p(r;x)

}
p(r;x)dr = 0. (111)

Given the control policies c//(r) and c+// (r) = c//(r) + λg(r),
which both meet the above conditions. Then by taking deriva-
tives of the constraints w.r.t. c//(r), function g(r) satisfies∫

g(r)Tφp(r;x)dr = 0 (112)∫
g(r)T

[
ΦΞ + φ∇ ln p(r;x)T

]
p(r;x)dr = 0T. (113)

where

φ =
x// + c//(r)

‖x// + c//(r)‖
, Φ =

I − φφT

‖x// + c//(r)‖
. (114)

Set the derivative of the mean parallel error

¯̀
//(λ) =

∫
(‖x// + c//(r) + λg(r)‖ − ‖ξ‖)2p(r;x)dr (115)

w.r.t. λ be zero when λ = 0, i.e.

2

∫
g(r)T[x// + c//(r)− ‖ξ‖φ]p(r;x)dr = 0 (116)

which indicates that

x// + c//(r) = λ0φ+
[
ΦΞ + φ∇ ln p(r;x)T

]
λ (117)

for some λ0 ∈ R and λ ∈ R2. Note that Φφ = 0, and then
we 1) multiply φT on the left of both sides, which leads to

‖x// + c//(r)‖ = λ0 +∇ ln p(r;x)Tλ (118)

and 2) multiply Φ on the left of both sides, which leads to

(Ξλ)− [φT(Ξλ)]φ

‖x// + c//(r)‖2
= 0. (119)

Substituting (118) into (110) leads to λ0 = %; then according
to (119), φ = is a constant unit vector in P and thus can be
expressed as φ = −Λu(ϑ). Then, (111) gives that

λ(ϑ) = J(x)−1Λu(ϑ). (120)

where any value of ϑ ∈ [0, 2π) maps to a corresponding saddle
point. The expected parallel error is given by

L//(%, ϑ) = (%− ‖ξ‖)2 + u(ϑ)TΛTJ(x)−1Λu(ϑ). (121)

It can be observed that the first term is minimized when % =
‖ξ‖, and the second term can be expressed as

1

2

(
tr
{
ΞJ(x)−1

}
+ψ

(
J(x)

)T
u(2ϑ)

)
(122)

where ψ
(
J(x)

)T
, [tr

{
P1J(x)−1

}
tr
{
P2J(x)−1

}
]. Then

according to Cauchy-Schwarz inequality, the solution ϑ? that
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minimizes the above expression is given by (60). Then the
optimal expected parallel error is given by

L// =
1

2

(
tr
{
ΞJ(x)−1

}
− ‖ψ

(
J(x)

)
‖
)
. (123)

To derive the control policy, by (117) we have

‖x// + c//‖ = ‖ξ‖+∇ ln p(r;x)Tλ? (124)

and note that
x// + c//
‖x// + c//‖

= φ = −J(x)λ? (125)

where λ? = λ(ϑ?) can be obtained by substituting (60) into
(120). The above two expressions directly lead to (59).

APPENDIX E
PROOF OF PROPOSITION 9

The conclusion can be drawn by two steps. First, we claim
that the matrix I −D−Ξ/2 +H is positive semidefinite. It
is sufficient to show that both I−D−Ξ and A = Ξ/2+H
are positive semidefinite. The first term is positive semidefinite
since D⊕P is a subspace of the entire space. For the second
term, note that

H = [ sinϑ · P1 + cosϑ · P2 ]/2 (126)

for some ϑ. Take any vector s ∈ R2N , which can be expressed
as s = β1ξ+β2η+b with ξTb = ηTb = 0, and we can have
the following inequality

sTAs

‖ξ‖4
=β2

1 + β2
2 + 2β1β2 sinϑ+ (β2

1 − β2
2) cosϑ

≥β2
1 + β2

2 −
√

(2β1β2)2 + (β2
1 − β2

2)2 = 0

(127)

which implies A � 0.
Second, we show that for any weight matrix W � 0,

P : minimize
w∈Rm

+

tr
{
WJ(x;w)−1

}
subject to ‖w‖1 = W0

(128)

is a convex optimization problem w.r.t. w. Since the constraint
is affine (convex), we need to show that the objective function
f(w) is convex w.r.t. w, which is equivalent to proving that
g(s) = f(w + sε) is convex w.r.t. s ∈ R+ for ∀w, ε ∈ Rm+ .
This condition can be verified after some algebra [45], and the
details are omitted due to the space limitation.
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