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Background

« Augmented Information (Agl) Services
— Communication + Computation
— The example of augmented reality

Video Source . e . Object R Overlay Image
(Input) Recognizer (Output)

k.
Y

— Not suitable to complete the computation tasks at user equipment (UE)
= Why: restricted computation capability + limited power
= How: offload the tasks to cloud networks
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Background

* Mobile Edge Computing network
— Computation resource -> end user
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Background

e Related Problems

- Task offloading Each individual problem is difficult
— Packet routing and scheduling Joint optimization is more complicated

- Resource allocation

 Performance Metrics: average delay and resource cost

— In general, there is a tradeoff
= Better delay -> data-center in proximity -> can be expensive
= Cheap network location -> can be remote -> excessive delay

— Goal of this work: to design a control policy that trades off the two metrics
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System Model

e Cloud Network
— Nodes: AP & UE

= Computation resource choice k;(t): computation capability Cy, ), config cost sy )
— Wired links between APs

= Transmission resource choice k;;(t): transmission capability Creyj(t) config cost Skij(t)

- Wireless links between AP and UE
Rz’j(t) = (?) ;?,‘?-j(t) log2 (1 + W)

0

Core Cloud

= Downlink (AP->UE) : beamforming

= Uplink (UE->AP): 1 to 1 communication
Zjegj r(t) <1, VeV,

= Transmission power constraints
Zm; py(t) <Py Vi€V
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System Model

* Service Function Chain

- Agl Service ¢ = Function 1 + ... + Function m + ... + Function M
packets of stage m _ packets of stage m + i
(m)

— Parameter of function m: scaling factor $o (m) \workload Te

— Commodity (u, ¢, m) (to distinguish the packets)
= destination node u
= requested service ¢
= current stage m
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Queuing System

* Queues and Flow Variables

- Queues Qi(u"”’m) (t) for different commodities (u, ¢, m)

- Flow variable
(u,p,m) (t)

* Processing flow H; por

(w,¢,m) (t)

» Transmission flow M

« Queuing dynamics
Qfgu’@ﬂﬂ(t + 1) < max {O, qu,é,nz) (t) — M_Ej;}‘-‘i‘"m-}(t) o Z ’ug.q‘},wn.)(w}

jEST

(u,6,m) (.0 (u,é,m)
Huseo ™ W e (1) + et (¢)
JES;

. . u,p,m-+1 U, p, M
Flow received from computation z4 """ (1) = €0™ it (1)
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S d d bl MO =2 e, [Swﬂme'Z( e )
tudied Problem s

min h; (Goal 1: resource cost) LD BINCTE Zjes; zij (t )pw() 7, ©)
st e =rT{Q(1)} < o0, (Goal 2: average delay)
p(t) >0,
w, b, m—41 (w,b.m .
poe ") = €M I (1), ey,
Z(u ¢ m) #"E;’f) m}(t)rc.(bm) S C;*'-'-f(t)’ Vi = V
Capacity constraint
p y Z j-i(u(f'j‘rn}({) < Cﬁ'*}(f (?’? ]) e b
(w.psrm) ~ Ry V() €&,

B % pr
Ri;(t) = (F) (1) log, (1 + gj J )

D s D)< Py Vi€V

Zjeg+ rij(t) <1, VieV,
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Proposed Design

« Solve the problem by Lyapunov drift-plus-penalty (LDP) approach
— Linear combination of drift and penalty weighted by parameter V

LDP £ [L(t + 1) — L(t)] +Vha () (fffn? ?Si{;i?(()) M QL ]t

jmmmmmmmmm Smmmmmmmm oo oo (U ¢.m) _ [Q(u 1P m)( t) — Q(“ P m)(t)]

<Bo+A"Qw) - > { ™

| (u,8,m) ;
| (u,¢,m) (m)Y  (u,¢,m) |
Processing Max-weight | Z [(wz Vep,i s ) i,pr (t) — VSkL(t)] :
| deV I
: (w.6m) (W) |
Wired Trans Max-weight | T Z [(ww Ve W)'“w () = Vs, (t)] !
E (4,9)EE :
: (u,¢,m) (uad)ym) . s :
Wireless Trans | cvx problem || + Z [wij Hij (1) = Vewipij (t)T] } (14) !
: ('ij)egi !
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Performance Analysis

* The delay performance
— Bo (i (A +€1) —h (AN)]V

ha < ~0(V)

€ €

* The cost performance
optimal cost

— | —x B
i <|hy (M) |+ 70 ~0(1/V)

 The algorithm is fully distributed and efficient
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Numerical Experiments

* Network Setup
— 4 APs serving 100 UEs (random walk)

Coverage arca of Seryer | (+25,+25)

— 3GPP urban microcell model Server | o ’T*AT -
- 100 MHz band allocated for each AP | | ] |

| Possible
links
(25, —25) (+25,—25)

» Agl services

Service 1: ¢V =1, ¢ =2, 1Y =300, 1/r{* = 400

Service 2: €4 = 2. & = 51 1/ = 200, 1/28 = 100

Coordinate
of servers

AVAILABLE RESOURCES AND COSTS OF THE MEC NETWORK (ON THE BASIS OF SECOND)

User i € Va Edge Server i € V},
Computation | K; = {0,1}, C, = k; CPUs, sg, = 5k;, cprs = 1 /CPU | K; = {0,--+ ,10}, Cy, = 5k; CPUs, sy, = 5k;, cpr.i = .2 /CPU
Wired Links No wired transmission between users Ki; ={0,---,5}, Ck,; = 10k;; Gbps, sy, = kij, cu,ij = 1 /Gb
Wireless Links P; =200mW, ¢y ; = 1 /W P =10W, co,i = -2 /W
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Numerical Experiments

* Stable region
— The maximum arrival rate of requests that the considered network can support
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Numerical Experiments

 Delay-Cost Tradeoff
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Conclusions

« MEC can aid the delivery of real-time Agl services requested by
end users, which can significantly improve the stable region

* The developed LDP-based algorithm can trade off the delay and
cost performance, i.e., achieving near-optimal resource cost with
guaranteed average delay performance

* The developed LDP-based algorithm is efficient and fully
distributed
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Q&A

 Thanks for joining the talk
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