

(ICC 2021)

Optimal Cloud Network Control with Strict Latency Constraints

Yang Cai, Jaime Llorca, Antonia M. Tulino, Andreas F. Molisch

Email: yangcai@usc.edu

University of Southern California

Background

- Increasing demand for computational resource
 - Real-time computer vision, multi-user conferencing, and augmented/virtual reality
- Limited local computational resource at UE
 - Tendency: light weight, portable devices
 - Restricted processing capability, battery
- Solution: requesting computing service from the cloud
 - Better delay and cost performance

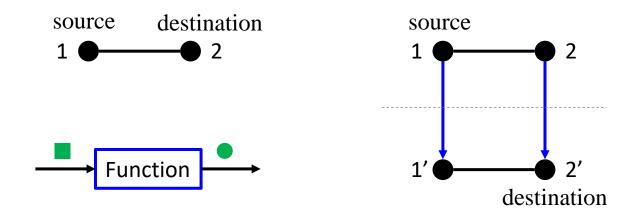
Background

- Distributed cloud network
 - Make it easier for the UEs to access the computational resource
 - Traditional processing network: separation of network & processing center
 - Distributed cloud network: deploy the computational resource in a more widespread manner
- NFV & SDN-enabled Next-Gen Cloud
 - Make it more flexible for the cloud to process the data-stream
 - Computing task → service function chain
 - Each individual function can be implemented separately (at different network locations)

Background

- The goal is to design a dynamic cloud control algorithm that achieves:
 - Better delay performance
 - Autonomous transportation, machine control in Industry 4.0
 - From average delay to per-packet delay
 - Better cost performance
 - Especially in heterogeneous network

- Cloud layered graph
 - The original problem can be transformed to packet routing problem



- Request model
 - Lifetime
 - The deadline by which the packet becomes outdated
 - The packet is called **effective** otherwise
 - I.I.D. arrival processes of packets with various initial lifetime at any node
 - Timely throughput
 - The rate of effective packet delivery
 - Reliability
 - The ratio of effective packets to all arrival packet

- Queuing system
 - Queues $\boldsymbol{Q}(t) = \left[Q_i^{(l)}(t)\right]$
 - The queue of lifetime *l* at node *i* on time slot *t*
 - Flow variables $\boldsymbol{x}(t) = \begin{bmatrix} x_{ij}^{(l)}(t) \end{bmatrix}$
 - The actual amount of lifetime *l* packets sent from node *i* to *j*
 - Queuing dynamics

exogenous packets

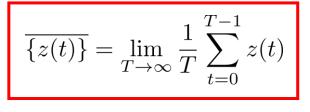
- Policy space
 - Decision variable: the flow variables $\boldsymbol{x}(t)$
 - Constraints
 - Non-negativity $\boldsymbol{x}(t) \succeq 0$
 - Link capacity constraint $\overline{\{\mathbb{E}\{x_{ij}(t)\}\}} \leq C_{ij}$
 - Availability constraint $x_{i\rightarrow}^{(l)}(t) \leq Q_i^{(l)}(t)$
 - Reliability constraint

$$\overline{\{\mathbb{E}\left\{x_{\to d}(t)\}\}} \triangleq \sum_{l \in \mathcal{L}} \overline{\left\{\mathbb{E}\left\{x_{\to d}^{(l)}(t)\right\}\right\}} \ge \gamma \|\boldsymbol{\lambda}\|_{1}$$

Delivered effective packets

School of Engineering

Reliability level × total arrival rate



Problem Formulation

$$\mathcal{P}_{1}: \min_{\boldsymbol{x}(t) \succeq 0} \left\{ \overline{\mathbb{E}\left\{h(\boldsymbol{x}(t))\right\}}\right\} \quad h(t) = \langle \boldsymbol{e}, \boldsymbol{x}(t) \rangle$$

s.t.
$$\frac{\{\mathbb{E}\left\{x_{\rightarrow d}(t)\}\}\}}{\{\mathbb{E}\left\{x_{ij}(t)\}\}\}} \geq \gamma \|\boldsymbol{\lambda}\|_{1}$$

$$\frac{\{\mathbb{E}\left\{x_{ij}(t)\}\}\}}{\{\mathbb{E}\left\{x_{ij}(t)\}\}\}} \leq C_{ij}, \ \forall (i, j) \in \mathcal{E}$$

$$x_{i\rightarrow}^{(l)}(t) \leq Q_{i}^{(l)}(t), \ \forall i \in \mathcal{V}, l \in \mathcal{L}$$

queuing dynamics of $\boldsymbol{Q}(t)$

• Challenges to solve the above problem

Proposed solution

• Transform it to standard form

$$\begin{split} \mathscr{P}_{2} : \min_{\boldsymbol{x}(t) \succeq 0} \overline{\{\mathbb{E}\{h(\boldsymbol{x}(t))\}\}} \\ \text{s.t.} \quad x_{ij}(t) \leq C_{ij} \\ \text{stabilize the virtual queue } \boldsymbol{U}(t) \\ U_{d}(t+1) = \max\{0, U_{d}(t) + \gamma A(t) - x_{\rightarrow d}(t)\} \\ U_{i}^{(l)}(t+1) = \max\{0, U_{i}^{(l)}(t) + x_{i\rightarrow}^{(\geq l)}(t) - x_{\rightarrow i}^{(\geq l+1)}(t) - a_{i}^{(\geq l)}(t) \\ \hline \\ \overline{\{\mathbb{E}\{x_{\rightarrow d}(t)\}\}} \geq \gamma \|\boldsymbol{\lambda}\|_{1}, \ \overline{\{\mathbb{E}\{x_{i\rightarrow}^{(\geq l)}(t)\}\}} \leq \overline{\{\mathbb{E}\{x_{\rightarrow i}^{(\geq l+1)}(t)\}\}} + \lambda_{i}^{(\geq l)} \end{split}$$

Relationship (Theoretical)

- The two problems have
 - Different admissible policy space
 - Feasible set for the decision variables
 - The same network stability region
 - Set of arrival rates under which there exists at least one admissible policy
 - We present an explicit characterization for the stability region
 - The same space of network flow assignment
 - The average transmission rate for a link
 - Furthermore, the same optimal cost

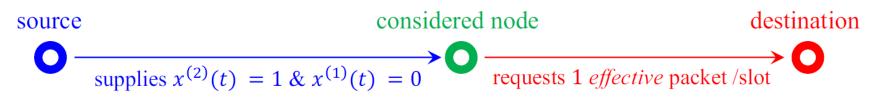
Physical Interpretation

- We name the second problem virtual network
 - Imagine that each node is connected to a data-reservoir
 - The supply for packets of any lifetime is sufficient
 - Mechanism (borrow-return)
 - First borrow the packets from the reservoir to satisfy the needs
 - Then return the received packets to the reservoir
 - Virtual queue record the data deficit of the data reservoir

$$U_d(t+1) = \max\left\{0, U_d(t) + \gamma A(t) - x_{\to d}(t)\right\}$$
$$U_i^{(l)}(t+1) = \max\left\{0, U_i^{(l)}(t) + x_{i\to}^{(\geq l)}(t) - x_{\to i}^{(\geq l+1)}(t) - a_i^{(\geq l)}(t)\right\}$$

Physical Interpretation

- We name the second problem virtual network
 - Equilibrium
 - Virtual queues are stabilized implies all network flows can be supported by actual packets
 - At any network location, by observing its virtual queues, we can know packets of which lifetime are available
 - Example (packets of lifetime 2 arrive at the source node)



Proposed Algorithm

- A two-step procedure
 - 1. Find the solution to \mathscr{P}_2 by Lyapunov Drift-plus-Penalty
 - Goal: min $\Delta(\boldsymbol{U}(t)) + Vh(\boldsymbol{\nu}(t)) \leq B \langle \tilde{\boldsymbol{a}}, \boldsymbol{U}(t) \rangle \langle \boldsymbol{w}(t), \boldsymbol{\nu}(t) \rangle$

$$w_{ij}^{(l)}(t) = -Ve_{ij} - U_i^{(\leq l)}(t) + \begin{cases} U_d(t) & j = d \\ U_j^{(\leq l-1)}(t) & j \neq d \end{cases}$$

Algorithm: find the best lifetime (with max weight)

$$\nu_{ij}^{(l)}(t) = C_{ij} \, \mathbb{I} \big\{ l = l^{\star}, w_{ij}^{(l^{\star})}(t) > 0 \big\}$$

Throughput optimal & near-optimal cost performance

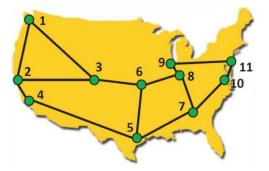
Proposed Algorithm

- A two-step procedure
 - 1. Find the solution to \mathscr{P}_2 by Lyapunov Drift-plus-Penalty
 - Empirical flow assignment of the above solution $\bar{\boldsymbol{\nu}}(t) = \frac{1}{t} \sum_{\tau=0}^{t-1} \boldsymbol{\nu}(\tau)$
 - 2. Find the solution to \mathscr{P}_1 based on flow matching with $\bar{\boldsymbol{\nu}}$
 - Fact a: the two problems have the same network flow assignment space
 - Fact b: given the flow assignment $\bar{\nu}$, we can construct a randomized policy to achieve it under P1, i.e., define

$$\alpha_{i}^{(l)}(j) = \bar{\nu}_{ij}^{(l)} / \left(\bar{\nu}_{\to i}^{(\geq l+1)} + \lambda_{i}^{(\geq l)} - \bar{\nu}_{i\to}^{(\geq l+1)} \right)$$

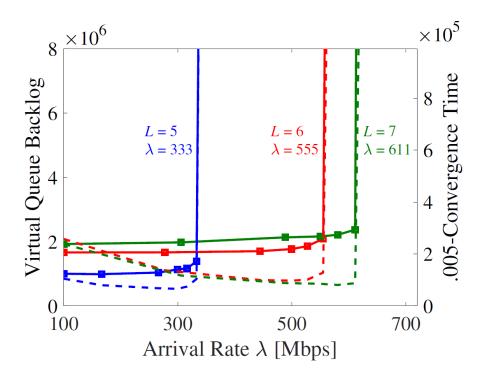
packet of lifetime *l* at node *i* has probability $\alpha_i^{(l)}(j)$ to be sent to node *j*

- Configuration
 - Network topology (Abilene network)
 - Available resource & cost

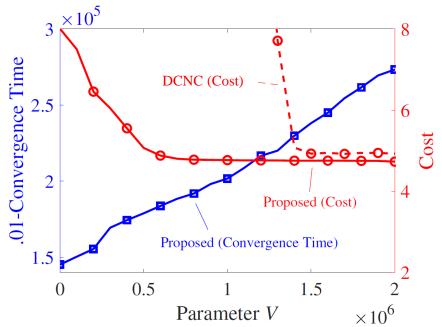


- The computational resource is 2 CPUs at any node, with cost 1 /CPU for node 5, 6, and 2 /CPU at other nodes
- The transmission resource is 1 Gb/slot for any link, with a cost of 1 /Gb
- Provided service
 - AgI service with 1 function: 50 Mbps/CPU, the same size of output as input
 - Two clients: (1, 9) and (3, 11)

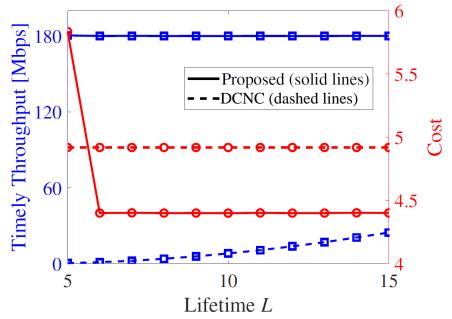
- Network stability region
 - Actual network (solid line, convergence time), virtual network (dashed line, virtual queue backlog)
 - The same stability region
 - Effects of different lifetime



- Tradeoff controlled by V parameter
 - [O(V), O(1/V)] tradeoff
 between convergence time
 and the achieved cost
 - Compared to the state-of-theart DCNC Algorithm, we attain a better cost performance
 - Drop outdated packets



- Effects of packets' lifetime
 - Increase max-lifetime
 - DCNC: throughput grows because more packets are counted effective
 - Proposed approach: cost reduces since the data packets can detour to cheaper network locations for processing



Conclusions

- Per-packet delay is a more realistic requirement, but it is also more challenging (does not admit LDP solution!)
- The proposed approach uses virtual network to *find flow assignment*, and actual network for *routing & scheduling*
- The proposed approach significantly outperforms the DCNC algorithm in *timely throughput*

Acknowledgement

- Thanks for joining in the talk!
- Please contact yangcai@usc.edu if you have any questions, comments
- The most recent results on this topic (with peak link capacity constraint) are under review for publication at IEEE/ACM Trans. Network.

